
COMPUTER ARCHITECTURE &

ORGANIZATION

Lecture Notes

III B.Tech – I Semester – R20 Regulation

ELECTRONICS & COMMUNICATION ENGINEERING

Prepared by;

P. IMRAN KHAN M.Tech.(Ph.D).,

Assistant Professor

Department of Electronics and Communication Engineering

St.JOHNS COLLEGE OF

ENGINEERING & TECHNOLOGY
(Affiliated to Jawaharlal Nehru Technological University, Anantapur, A.P.)

Yerrakota, Yemmiganur-518360, Kurnool(Dist), A.P.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, ANANTAPUR

B.Tech (ECE) – III-I Sem L T P C

3 0 0 3

COMPUTER ARCHITECTURE & ORGANIZATION
- (20A04504a)

Course Objectives:

The purpose of the course is to introduce principles of computer organization and the basic

architectural concepts.

Course Outcomes:

 Understand the basics of instructions sets and their impact on processor design.

 Demonstrate an understanding of the design of the functional units of a digital computer

system.

 Evaluate cost performance and design trade-offs in designing and constructing a computer

processor including memory.

 Design a pipeline for consistent execution of instructions with minimum hazards.

 Recognize and manipulate representations of numbers stored in digital computers.

UNIT I

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer

Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language, Register Transfer,

Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro

operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Instruction codes, Computer Registers Computer

instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output

and Interrupt.

UNIT II

Micro programmed Control: Control memory, Address sequencing, micro program example, design

of control unit.

Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes,

Data Transfer and Manipulation, Program Control.

UNIT III

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point

Representation.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division Algorithms,

Floating – point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations.

UNIT IV

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of Transfer,

Priority Interrupt Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory,

Cache Memory.

UNIT V

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics. Pipeline and Vector

Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline,

Vector Processing, Array Processor. Multi Processors: Characteristics of Multiprocessors,

Interconnection Structures, Interprocessor arbitration, Interprocessor communication and

synchronization, Cache Coherence.

Textbook:

1. Computer System Architecture – M. Moris Mano, Third Edition, Pearson/PHI.

References:

1. Computer Organization – Car Hamacher, ZvonksVranesic, SafeaZaky, V th Edition, McGraw Hill.

2. Computer Organization and Architecture – William Stallings Sixth Edition, Pearson/PHI.

3. Structured Computer Organization – Andrew S. Tanenbaum, 4th Edition, PHI/Pearson.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

1

UNIT – 01 – Part - A

DIGITAL COMPUTERS

Digital Computers:

A Digital computer can be considered as a digital system that performs various computational tasks.

The digital computer is a digital system that performs various computational tasks. The

word digital implies that the information in the computer is represented by variables that take a limited

number of discrete values. These values are processed internally by components that can maintain a limited

number of discrete states.

The decimal digits 0, 1, 2, ..., 9, for example, provide 10 discrete values. The first electronic digital

computer, developed in the late 1940s, was used primarily for numerical computations and the discrete

elements were the digits. From this application the term digital computer emerged.

In practice, digital computers function more reliably if only two states are used. Because of the

physical restriction of components, and because human logic tends to be binary (i.e. true or false, yes or no

statements), digital components that are constrained to take discrete values are further constrained to take only

two values and are said to be binary.

Digital computers use the binary number system, which has two digits: 0 and 1. A binary digit is called

a bit. Information is represented in digital computers in groups of bits. By using various coding techniques,

groups of bits can be made to represent not only binary numbers but also other discrete symbols, such as

decimal digits or letters of the alphabet.

The first electronic digital computer was developed in the late 1940s and was used primarily for

numerical computations.

By convention, the digital computers use the binary number system, which has two digits: 0 and 1. A

binary digit is called a bit.

A computer system is subdivided into two functional entities: Hardware and Software.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

2

The hardware consists of all the electronic components and electromechanical devices that comprise

the physical entity of the device.

The software of the computer consists of the instructions and data that the computer manipulates to

perform various data-processing tasks.

 The Central Processing Unit (CPU) contains an arithmetic and logic unit for manipulating data,

a number of registers for storing data, and a control circuit for fetching and executing

instructions.

 The memory unit of a digital computer contains storage for instructions and data.

 The Random Access Memory (RAM) for real-time processing of the data.

 The Input-Output devices for generating inputs from the user and displaying the final results to

the user.

 The Input-Output devices connected to the computer include the keyboard, mouse, terminals,

magnetic disk drives, and other communication devices.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

3

Computer Architecture:

Computer Architecture is a functional description of requirements and design implementation for

the various parts of a computer. It deals with the functional behavior of computer systems. It comes

before the computer organization while designing a computer.

Architecture describes what the computer does.

Computer Organization:

Computer Organization comes after the decision of Computer Architecture first. Computer

Organization is how operational attributes are linked together and contribute to realizing the

architectural specification. Computer Organization deals with a structural relationship.

The organization describes how it does it.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

4

Difference between Computer Architecture and Computer Organization:

Computer Architecture Computer Organization

Architecture describes what the computer does.

The Organization describes how it does it.

Computer Architecture deals with the functional

behavior of computer systems.

Computer Organization deals with a structural

relationship.

In the above figure, it’s clear that it deals with high-

level design issues.

In the above figure, it’s also clear that it deals with low-

level design issues.

Architecture indicates its hardware.

Where Organization indicates its performance.

As a programmer, you can view architecture as a

series of instructions, addressing modes, and

registers.

The implementation of the architecture is called

organization.

For designing a computer, its architecture is fixed

first.

For designing a computer, an organization is decided

after its architecture.

Computer Architecture is also called Instruction Set

Architecture (ISA).

Computer Organization is frequently called

microarchitecture.

Computer Architecture comprises logical functions

such as instruction sets, registers, data types, and

addressing modes.

Computer Organization consists of physical units like

circuit designs, peripherals, and adders.

The different architectural categories found in our

computer systems are as follows:

1. Von-Neumann Architecture

2. Harvard Architecture

3. Instruction Set Architecture

4. Micro-architecture

5. System Design

CPU organization is classified into three categories based

on the number of address fields:

1. Organization of a single Accumulator.

2. Organization of general registers

3. Stack organization

It makes the computer’s hardware visible.

It offers details on how well the computer performs.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

5

Architecture coordinates the hardware and software

of the system.

Computer Organization handles the segments of the

network in a system.

The software developer is aware of it.

It escapes the software programmer’s detection.

Examples- Intel and AMD created the x86

processor. Sun Microsystems and others created the

SPARC processor. Apple, IBM, and Motorola

created the PowerPC.

Organizational qualities include hardware elements that

are invisible to the programmer, such as interfacing of

computer and peripherals, memory technologies, and

control signals.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

6

UNIT – 01 – Part - B

REGISTER TRANSFER LANGUAGE AND MICRO OPERATIONS

Basic Definitions:

 A digital system is an interconnection of digital hardware modules.

 The modules are registers, decoders, arithmetic elements, and control logic.

 The various modules are interconnected with common data and control paths to form a digital

computer system.

 Digital modules are best defined by the registers they contain and the

operations that are performed on the data stored in them.

 The operations executed on data stored in registers are called micro-operations.

 A micro-operation is an elementary operation performed on the information stored in one or more

registers.

 The result of the operation may replace the previous binary

information of a register or may be transferred to another register.

 Examples of micro-operations are shift, count, clear, and load.

 The internal hardware organization of a digital computer is best defined by

specifying:

1. The set of registers it contains and their function.

2. The sequence of micro-operations performed on the binary information

stored in the registers.

3. The control that initiates the sequence of micro-operations.

Register Transfer Language:

 The symbolic notation used to describe the micro-operation transfer among registers is called RTL

(Register Transfer Language).

 The use of symbols instead of a narrative explanation provides an organized and concise manner

for listing the micro-operation sequences in registers and the control functions that initiate them.

 A register transfer language is a system for expressing in symbolic form the microoperation

sequences among the registers of a digital module.

 It is a convenient tool for describing the internal organization of digital computers in concise and

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

7

precise manner.

Registers:

 Computer registers are designated by upper case letters (and optionally followed by digits or

letters) to denote the function of the register.

 For example, the register that holds an address for the memory unit is usually called a memory

address register and is designated by the name MAR.

 Other designations for registers are PC (for program counter), IR (for instruction register, and R1

 (for processor register).

 The individual flip-flops in an n-bit register are numbered in sequence from 0 through n-1, starting

from 0 in the rightmost position and increasing the numbers toward the left.

Figure shows the representation of registers in block diagram form.

 The most common way to represent a register is by a rectangular box with the name of the

register inside, as in Fig.(a).

 The individual bits can be distinguished as in (b).

 The numbering of bits in a 16-bit register can be marked on top of the box as shown in (c).

 16-bit register is partitioned into two parts in (d). Bits 0 through 7 are assigned the symbol L (for

low byte) and bits 8 through 15 are assigned the symbol H (for high byte).

 The name of the 16-bit register is PC. The symbol PC (0-7) or PC (L) refers to the low-order

byte and PC (8-15) or PC (H) to the high-order byte.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

8

Register Transfer:

 Information transfer from one register to another is designated in symbolic form by means of a

replacement operator.

 The statement R2← R1 denotes a transfer of the content of register R1 into register R2.

 It designates a replacement of the content of R2 by the content of R1.

 By definition, the content of the source register R 1 does not change after the transfer.

 If we want the transfer to occur only under a predetermined control condition then it can be

shown by an if-then statement.

if (P=1) then R2← R1

 P is the control signal generated by a control section.

 We can separate the control variables from the register transfer operation by specifying a Control

Function.

 Control function is a Boolean variable that is equal to 0 or 1.

 control function is included in the statement as

P: R2← R1

 Control condition is terminated by a colon implies transfer operation be executed by the

hardware only if P=1.

 Every statement written in a register transfer notation implies a hardware construction for

implementing the transfer.

 Figure shows the block diagram that depicts the transfer from R1 to R2.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

9

 The n outputs of register R1 are connected to the n inputs of register R2.

 The letter n will be used to indicate any number of bits for the register. It will be replaced by an

actual number when the length of the register is known.

 Register R2 has a load input that is activated by the control variable P.

 It is assumed that the control variable is synchronized with the same clock as the one applied to

the register.

 As shown in the timing diagram, P is activated in the control section by the rising edge

of a clock pulse at time t.

 The next positive transition of the clock at time t + 1 finds the load input active and the data inputs

of R2 are then loaded into the register in parallel.

 P may go back to 0 at time t+1; otherwise, the transfer will occur with every clock pulse transition

while P remains active.

 Even though the control condition such as P becomes active just after time t, the actual transfer

does not occur until the register is triggered by the next positive transition of the clock at time t +1.

 The basic symbols of the register transfer notation are listed in below table

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

10

Symbol Description Examples

Letters(and numerals) Denotes a register MAR, R2

Parentheses () Denotes a part of a register R2(0-7), R2(L)

Arrow <-- Denotes transfer of information R2 <-- R1

Comma , Separates two microoperations R2 <-- R1, R1 <-- R2

 A comma is used to separate two or more operations that are executed at the same time.

The statement

T : R2← R1, R1← R2 (exchange operation)

denotes an operation that exchanges the contents of two rgisters during one common clock pulse

provided that T=1.

Bus and Memory Transfers:

 A more efficient scheme for transferring information between registers in a multiple-

register configuration is a Common Bus System.

 A common bus consists of a set of common lines, one for each bit of a register.

 Control signals determine which register is selected by the bus during each particular

register transfer.

 Different ways of constructing a Common Bus System

 Using Multiplexers

 Using Tri-state Buffers

Common bus system is with multiplexers:

 The multiplexers select the source register whose binary information is

then placed on the bus.

 The construction of a bus system for four registers is shown in below Figure.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

11

 The bus consists of four 4 x 1 multiplexers each having four data inputs, 0 through 3, and two

selection inputs, S1 and S0.

 For example, output 1 of register A is connected to input 0 of MUX 1 because this input is labelled

A1.

 The diagram shows that the bits in the same significant position in each register are connected to

the data inputs of one multiplexer to form one line of the bus.

 Thus MUX 0 multiplexes the four 0 bits of the registers, MUX 1 multiplexes the four 1 bits of

the registers, and similarly for the other two bits.

 The two selection lines Si and So are connected to the selection inputs of all four multiplexers.

 The selection lines choose the four bits of one register and transfer them into the four-line

common bus.

 When S1S0 = 00, the 0 data inputs of all four multiplexers are selected and applied to the outputs

that form the bus.

 This causes the bus lines to receive the content of register A since the outputs of this register are

connected to the 0 data inputs of the multiplexers.

 Similarly, register B is selected if S1S0 = 01, and so on.

 Table shows the register that is selected by the bus for each of the four possible binary value of

the selection lines.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

12

 In general a bus system has

 multiplex “k” Registers

 each register of “n” bits

 to produce “n-line bus”

 no. of multiplexers required = n

 size of each multiplexer = k x 1

 When the bus is includes in the statement, the register transfer is symbolized as follows:

BUS← C, R1← BUS

 The content of register C is placed on the bus, and the content of the bus is loaded into register R1

by activating its load control input. If the bus is known to exist in the system, it may be convenient

just to show the direct transfer.

R1← C

Arithmetic Micro-operations:

 The basic arithmetic micro-operations are

 Addition

 Subtraction

 Increment

 Decrement

 Shift

 The arithmetic Micro-operation defined by the statement below specifies the add micro-

operation.

R3 ← R1 + R2

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

13

 It states that the contents of R1 are added to contents of R2 and sum is transferred to R3.

 To implement this statement hardware requires 3 registers and digital component that performs

addition

 Subtraction is most often implemented through complementation and addition.

 The subtract operation is specified by the following statement

R3 ← R1 + R2 + 1

 instead of minus operator, we can write as

 R2 is the symbol for the 1’s complement of R2

 Adding 1 to 1’s complement produces 2’s complement

 Adding the contents of R1 to the 2's complement of R2 is equivalent to R1-R2.

Binary Adder:

 Digital circuit that forms the arithmetic sum of 2 bits and the previous carry is called FULL ADDER.

 Digital circuit that generates the arithmetic sum of 2 binary numbers of any lengths is called

 Figure shows the interconnections of four full-adders (FA) to provide a 4-bit binary adder.

 The augends bits of A and the addend bits of B are designated by subscript numbers from

right to left, with subscript 0 denoting the low-order bit.

 The carries are connected in a chain through the full-adders. The input carry to the

binary adder is Co and the output carry is C4. The S outputs of the full-adders generate

the required sum bits.

 An n-bit binary adder requires n full-adders.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

14

Binary Adder – Subtractor:

 The addition and subtraction operations can be combined into one common circuit by including an

exclusive-OR gate with each full-adder.

 A 4-bit adder-subtractor circuit is shown in Fig..

 The mode input M controls the operation. When M = 0 the circuit is an adder and when M = 1 the

circuit becomes a subtractor.

 Each exclusive-OR gate receives input M and one of the inputs of B

 When M = 0, we have B xor 0 = B. The full-adders receive the value of B, the input carry is 0,

and the circuit performs A plus B.

 When M = 1, we have B xor 1 = B' and Co = 1.

 The B inputs are all complemented and a 1 is added through the input carry.

 The circuit performs the operation A plus the 2's complement of B.

Binary Incrementer:

 The increment microoperation adds one to a number in a register.

 For example, if a 4-bit register has a binary value 0110, it will go to 0111 after it is incremented.

 This can be accomplished by means of half-adders connected in cascade.

 The diagram of a 4-bit 'combinational circuit incrementer is shown in Fig..

 One of the inputs to the least significant half-adder (HA) is connected to logic-1 and the other

input is connected to the least significant bit of the number to be incremented.

 The output carry from one half-adder is connected to one of the inputs of the next-higher-order

half-adder.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

15

 The circuit receives the four bits from A0 through A3, adds one to it, and generates the incremented

output in S0 through S3.

 The output carry C4 will be 1 only after incrementing binary 1111. This also causes outputs S0

through S3 to go to 0.

 The circuit of Fig. can be extended to an n -bit binary incrementer by extending the diagram to

include n half-adders.

 The least significant bit must have one input connected to logic-1. The other inputs receive the

number to be incremented or the carry from the previous stage.

Arithmetic Circuit:

 The basic component of an arithmetic circuit is the parallel adder.

 By controlling the data inputs to the adder, it is possible to obtain different types of arithmetic

operations.

 The diagram of a 4-bit arithmetic circuit is shown in Fig.. It has four full-adder circuits that

constitute the 4-bit adder and four multiplexers for choosing different operations.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

16

 There are two 4-bit inputs A and B and a 4-bit output D.

 The four inputs from A go directly to the X inputs of the binary adder.

 Each of the four inputs from B are connected to the data inputs of the multiplexers.

 The multiplexers data inputs also receive the complement of B.

 The other two data inputs are connected to logic-0 and logic-1.

 The four multiplexers are controlled by two selection inputs S1 and S0. The input carry Cin, goes to

the carry input of the FA in the least significant position. The other carries are connected from one

stage to the next.

 By controlling the value of Y with the two selection inputs S1 and S0 and making Cin equal to 0 or

1, it is possible to generate the eight arithmetic microoperations listed in Table .

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

17

Addition:

 When S1S0= 00, the value of B is applied to the Y inputs of the adder.

 If Cir, = 0, the output D =A+B.

 If Cin = 1, output D=A+B + 1.

 Both cases perform the add microoperation with or without adding the input carry.

Subtraction:

 When S1S0 = 01, the complement of B is applied to the Y inputs of the adder.

 If Cin = 1, then D = A + B + 1. This produces A plus the 2's complement of B,

which is equivalent to a subtraction of A -B.

 When Cin = 0 then D = A + B. This is equivalent to a subtract with borrow, that

is, A-B-1.

Increment:

 When S1S0 = 10, the inputs from B are neglected, and instead, all 0's are inserted into the Y inputs.

The output becomes D = A + 0 + Cin. This gives D = A when Cin = 0 and D = A + 1 when Cin = 1.

 In the first case we have a direct transfer from input A to output D.

 In the second case, the value of A is incremented by 1.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

18

Decrement:

 When S1S0= 11, all l's are inserted into the Y inputs of the adder to produce the decrement

operation D = A -1 when Cin = 0.

 This is because a number with all 1's is equal to the 2's complement of 1 (the 2's complement of

binary 0001 is 1111). Adding a number A to the 2's complement of 1 produces F = A + 2's

complement of 1 = A — 1. When Cin = 1, then D = A -1 + 1=A, which causes a direct transfer from

input A to output D.

Logic Micro-operations:

 Logic microoperations specify binary operations for strings of bits stored in registers.

 These operations consider each bit of the register separately and treat them as binary variables.

 For example, the exclusive-OR microoperation with the contents of two registers RI and R2 is

symbolized by the statement

 It specifies a logic microoperation to be executed on the individual bits of the registers provided

that the control variable P = 1.

List of Logic Microoperations:

 There are 16 different logic operations that can be performed with two binary variables.

 They can be determined from all possible truth tables obtained with two binary variables as

shown in Table.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

19

 The 16 Boolean functions of two variables x and y are expressed in algebraic form in the first

column of Table.

 The 16 logic microoperations are derived from these functions by replacing variable x by the

binary content of register A and variable y by the binary content of register B.

 The logic micro-operations listed in the second column represent a relationship between the

binary content of two registers A and B.

Hardware Implementation:

 The hardware implementation of logic microoperations requires that logic gates be inserted for

each bit or pair of bits in the registers to perform the required logic function.

 Although there are 16 logic microoperations, most computers use only four--AND, OR, XOR

(exclusive-OR), and complement from which all others can be derived.

 Figure shows one stage of a circuit that generates the four basic logic microoperations.

 It consists of four gates and a multiplexer. Each of the four logic operations is generated through a

gate that performs the required logic.

 The outputs of the gates are applied to the data inputs of the multiplexer. The two selection inputs S1

and S0 choose one of the data inputs of the multiplexer and direct its value to the output.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

20

Shift Microoperations:

 Shift microoperations are used for serial transfer of data.

 The contents of a register can be shifted to the left or the right.

 During a shift-left operation the serial input transfers a bit into the rightmost position.

 During a shift-right operation the serial input transfers a bit into the leftmost position.

 There are three types of shifts: logical, circular, and arithmetic.

 The symbolic notation for the shift microoperations is shown in Table.

 Logical Shift:

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

21

 A logical shift is one that transfers 0 through the serial input.

 The symbols shl and shr for logical shift-left and shift-right microoperations.

 The microoperations that specify a 1-bit shift to the left of the content of register R and a 1-

bit shift to the right of the content of register R shown in table.

 The bit transferred to the end position through the serial input is assumed to be 0 during a

logical shift.

 Circular Shift:

 The circular shift (also known as a rotate operation) circulates the bits of the register

around the two ends without loss of information.

 This is accomplished by connecting the serial output of the shift register to its serial input.

 We will use the symbols cil and cir for the circular shift left and right, respectively.

 Arithmetic Shift:

 An arithmetic shift is a microoperation that shifts a signed binary number to the left or

right.

 An arithmetic shift-left multiplies a signed binary number by 2.

 An arithmetic shift-right divides the number by 2.

 Arithmetic shifts must leave the sign bit unchanged because the sign of the number

remains the same when it is multiplied or divided by 2.

Hardware Implementation:

 A combinational circuit shifter can be constructed with multiplexers as shown in Fig.

 The 4-bit shifter has four data inputs, A0 through A3, and four data outputs, H0 through H3.

 There are two serial inputs, one for shift left (IL) and the other for shift right (IR).

 When the selection input S=0 the input data are shifted right (down in the diagram).

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

22

 When S = 1, the input data are shifted left (up in the diagram).

 The function table in Fig. shows which input goes to each output after the shift.

 A shifter with n data inputs and outputs requires n multiplexers.

 The two serial inputs can be controlled by another multiplexer to provide the three possible types of

shifts.

Arithmetic Logic Shift Unit:

 Instead of having individual registers performing the microoperations directly, computer systems

employ a number of storage registers connected to a common operational unit called an arithmetic

logic unit, abbreviated ALU.

 The ALU is a combinational circuit so that the entire register transfer operation from the

 source registers through the ALU and into the destination register can be performed during one clock

pulse period.

 The shift microoperations are often performed in a separate unit, but sometimes the shift unit is made

part of the overall ALU.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

23

 The arithmetic, logic, and shift circuits introduced in previous sections can be combined into one ALU

with common selection variables. One stage of an arithmetic logic shift unit is shown in Fig.

 Particular microoperation is selected with inputs S1 and S0. A 4 x 1 multiplexer at the output

chooses between an arithmetic output in Di and a logic output in Ei.

 The data in the multiplexer are selected with inputs S3 and S2. The other two data inputs to the

multiplexer receive inputs Ai-1 for the shift-right operation and Ai+1 for the shift-left operation.

 The circuit whose one stage is specified in Fig. 4-13 provides eight arithmetic operation, four logic

operations, and two shift operations.

 Each operation is selected with the five variables S3, S2, S1, S0 and Cin.

 The input carry Cin is used for selecting an arithmetic operation only.

 Table lists the 14 operations of the ALU. The first eight are arithmetic operations and are

selected with S3S2 = 00.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

24

 The next four are logic and are selected with S3S2 = 01.

 The input carry has no effect during the logic operations and is marked with don't-care x’s.

 The last two operations are shift operations and are selected with S3S2= 10 and 11.

 The other three selection inputs have no effect on the shift.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

25

UNIT – 01 – Part - C

BASIC COMPUTER ORGANIZATION AND DESIGN

1. InstructionCodes:

 Theorganizationofthecomputerisdefinedbyitsinternalregisters,thetimingandcontrolstructure, and the set

of instructions that ituses.

 Internal organization of a computer is defined by the sequence of micro-operations it performs on

data stored in its registers.

 Computer can be instructed about the specific sequence of operations it mustperform.

 User controls this process by means of aProgram.

 Program:setofinstructionsthatspecifytheoperations,operands,andthesequencebywhich

processing has tooccur.

 Instruction: a binary code that specifies a sequence of micro-operations for thecomputer.

 The computer reads each instruction from memory and places it in a control register. The control

theninterpretsthebinarycodeoftheinstructionandproceedstoexecuteitbyissuingasequenceof micro-

operations. – InstructionCycle

 Instruction Code: group of bits that instruct the computer to perform specificoperation.

 Instruction code is usually divided into two parts: Opcode andaddress(operand)

Operation Code(opcode):

 Group of bits that define theoperation

 Eg: add, subtract, multiply, shift,complement.

 No. of bits required for opcode depends on no. of operations available incomputer.

 n bit opcode>= 2n (or less)operations

Address(operand):

 Specifies the location of operands (registers or memorywords)

 Memory words are specified by their address

 Registers are specified by their k-bit binarycode

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

26

 k-bit address >= 2k registers

Stored Program Organization:

 The ability to store and execute instructions is the most important property of a general-purpose

computer. That type of stored program concept is called stored programorganization.

 The simplest way to organize a computer is to have one processor register and an instruction code

format with two parts. The first part specifies the operation to be performed and the second specifies anaddress.

 The below figure shows the stored programorganization

 Instructions are stored in one section of memory and data inanother.

 For a memory unit with 4096 words we need 12 bits to specify an address since 212 =4096.

 If we store each instruction code in one 16-bit memory word, we have available four bits for the

operation code (abbreviated opcode) to specify one out of 16 possible operations, and 12 bits to

specify the address of anoperand.

 Accumulator(AC):

 Computers that have a single-processor register usually assign to it the name accumulator

and label itAC.

 The operation is performed with the memory operand and the content ofAC.

Addressing of Operand:

 Sometimes convenient to use the address bits of an instruction code not as an address but as the

actualoperand.

 When the second part of an instruction code specifies an operand, the instruction is said to havean

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

27

immediate operand.

 When the second part specifies the address of an operand, the instruction is said to have a direct

address.

 Whensecondpartoftheinstructiondesignateanaddressofamemoryword inwhichtheaddressof the operand

is found such instruction have indirectaddress.

 One bit of the instruction code can be used to distinguish between a direct and an indirectaddress.

 The instruction code format shown in Fig. 5-2(a). It consists of a 3-bit operation code, a 12-bit

address, and an indirect address mode bit designated by I. The mode bit is 0 for a direct address and 1 for an

indirectaddress.

 It is placed in address 22 in memory. The I bit is 0, so the instruction is recognized as a direct address

instruction. The opcode specifies an ADD instruction, and the address part is the binary equivalent of 457.

 The control finds the operand in memory at address 457 and adds it to the content ofAC.

 The instruction in address 35 shown in Fig.(c) has a mode bit I =1.Therefore, it is recognized as an

indirect addressinstruction.

 Theaddresspartisthebinaryequivalentof300.Thecontrolgoestoaddress300tofindtheaddress of the

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

28

operand. The address of the operand in this case is1350.The operand found in address 1350 is then added to the

content ofAC.

 The effective address to be the address of the operand in a computation-type instruction or the target

address in a branch-typeinstruction.Thus the effective address in the instruction of Fig.(b) is 457 and in the

instruction of Fig.(c) is 1350.

2. Computer Registers:

What is the need for computerregisters?

The need of the registers in computerfor;

 Instruction sequencing needs a counter to calculate the address of the next instruction after

execution of the current instruction is completed(PC).

 Necessarytoprovidearegisterinthecontrolunitforstoringtheinstructioncodeafter it is read from

memory(IR).

 Needs processor registers for manipulating data (AC and TR) and a register for holding a

memory address(AR).

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

29

 The data register (DR) holds the operand read frommemory.

 The accumulator (AC) register is a general purpose processingregister.

 The instruction read from memory is placed in the instruction register(IR).

 The temporary register (TR) is used for holding temporary data during theprocessing.

 The memory address register (AR) has 12 bits since this is the width of a memoryaddress.

 The program counter (PC) also has 12 bits and it holds the address of the next instruction to be read

from memory after the current instruction isexecuted.

 Two registers are used for input andoutput.

 The input register (INPR) receives an 8-bit character from an inputdevice.

 The output register (OUTR) holds an 8-bit character for an outputdevice.

Common Bus System:

 The basic computer has eight registers, a memory unit, and a controlunit. Paths must be provided to

transfer information from one register to another and betweenmemory andregisters.A more efficient scheme for

transferring information in a system with many registers is to use a commonbus.

 The connection of the registers and memory of the basic computer to a common bus system is

shown in Fig.

 The outputs of seven registers and memory are connected to the commonbus.

Thespecificoutputthatisselectedforthebuslinesatanygiventimeisdeterminedfromthebinary value of the

selection variables S2, S1, andS0.

 The number along each output shows the decimal equivalent of the required binaryselection.

 For example, the number along the output of DR is 3. The 16-bit outputs of DR are placed on the bus

lines when S2S1S0 = 011.

 Thelinesfromthecommonbusareconnectedtotheinputsofeachregisterandthedatainputsof thememory.

 The particular register whose LD (load) input is enabled receives the data from the bus during

the next clock pulsetransition.

 The memory receives the contents of the bus when its write input isactivated.

 The memory places its 16-bit output onto the bus when the read input is activated and S2S1S0 =111.

 Two registers, AR and PC, have 12 bits each since they hold a memoryaddress.

 WhenthecontentsofARorPCareappliedtothe16-bitcommonbus,thefourmostsignificantbits are set to

0's.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

30

 WhenARorPCreceivesinformationfromthebus,onlythe12leastsignificantbitsaretransferred into

theregister.

 The input register INPR and the output register OUTR have 8 bitseach.

 They communicate with the eight least significant bits in thebus.

 INPRisconnectedtoprovideinformationtothebusbutOUTRcanonlyreceiveinformationfromthe bus.

 This is because INPR receives a character from an input device which is then transferred toAC.

 OUTR receives a character from AC and delivers it to an output device.

 Five registers have three control inputs: LD (load), INR (increment), and CLR(clear).

 This type of register is equivalent to a binary counter with parallel load and synchronousclear.

 Two registers have only a LDinput.

 Theinputdataandoutputdataofthememoryareconnectedtothecommonbus,butthememory address is

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

31

connected toAR.

 Therefore, AR must always be used to specify a memoryaddress.

 The 16 inputs of AC come from an adder and logic circuit. This circuit has three sets ofinputs.

 One set of 16-bit inputs come from the outputs ofAC.

 Another set of 16-bit inputs come from the data registerDR.

 The result of an addition is transferred to AC and the end carry-out of the addition is

transferred to flip-flop E (extended ACbit).

 A third set of 8-bit inputs come from the input registerINPR.

 The content of any register can be applied onto the bus and an operation can be performed in the

adder and logic circuit during the same clockcycle.

 For example, the two microoperations DR AC and AC DR can be executed at the sametime.

 This can be done by placing the content of AC on the bus (with S2S1S0 = 100), enabling the LD

(load) input of DR, transferring the content of DR through the adder and logic circuit into AC, and

enabling the LD (load) input of AC, all during the same clockcycle.

3. Computer Instructions:

 The basic computer has three instruction code formats, as shown in Fig.. Each format has 16bits.

Theoperationcode(opcode)partoftheinstructioncontainsthreebitsandthemeaningofthe remaining

13 bits depends on the operation codeencountered.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

32

 A memory-reference instruction uses 12 bits to specify an address and one bit to specify the

addressing mode I.

 I is equal to 0 for direct address and to 1 for indirectaddress.

 Theregister-referenceinstructionsarerecognizedbytheoperationcode1.11witha0intheleftmost bit (bit 15)

of theinstruction.

 A register-reference instruction specifies an operation on the AC register. So an operand from

memoryisnotneeded.Therefore,theother12bitsareusedtospecifytheoperationtobeexecuted.

 Aninput—outputinstructiondoesnotneedareferencetomemoryandisrecognizedbythe operation

code 111 with a 1 in the leftmost bit of theinstruction.

 The remaining 12 bits are used to specify the type of input—outputoperation.

 The instructions for the computer are listed in Table.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

33

The symbol designation is a three-letter word and represents an abbreviation intended for programmers

andusers.

 The hexadecimal code is equal to the equivalent hexadecimal number of the binary code used for the

instruction.

Instruction Set Completeness:

 Acomputershouldhaveasetofinstructionssothattheusercanconstructmachinelanguage programs

to evaluate anyfunction.

 The set of instructions are said to be complete if the computer includes a sufficient number of

instructions in each of the followingcategories:

 Arithmetic, logical, and shiftinstructions

 Data Instructions (for moving information to and from memory and processorregisters)

 Program control orBrach

 Input and outputinstructions

 There is one arithmetic instruction, ADD, and two related instructions, complement AC(CMA)and

increment AC(INC). With these three instructions we can add and subtract binary numbers when

negative numbers are in signed-2's complementrepresentation.

 Thecirculateinstructions,CIRandCIL;canbeusedforarithmeticshiftsaswellasanyother type of

shiftsdesired.

 There are three logic operations: AND, complement AC (CMA), and clear AC(CLA). The

ANDand complement provide a NANDoperation.

 Moving information from memory to AC is accomplished with the load AC (LDA) instruction.

Storing information from AC into memory is done with the store AC (STA)instruction.

 The branch instructions BUN, BSA, and ISZ, together with the four skip instructions,

provide capabilities for program control and checking of statusconditions.

 Theinput(INP}andoutput(OUT)instructionscauseinformationtobetransferredbetweenthe

computer and externaldevices.

4. Timing andControl:

 The timing for all registers in the basic computer is controlled by a master clockgenerator.The clock

pulses are applied to all flip-flops and registers in the system, including the flip-flops and registers in the

controlunit.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

34

 The clock pulses do not change the state of a register unless the register is enabled by a control

signal.The control signals are generated in the control unit and provide control inputs for the

multiplexers in the common bus, control inputs in processor registers, and microoperations for

theaccumulator.

 There are two major types of controlorganization:

 Hardwiredcontrol

 Microprogrammedcontrol

 The differences between hardwired and microprogrammed controlare

Hardwired Control Microprogrammed Control

 The control logic is implemented with gates,

flip-flops, decoders, and other digital

circuits.

 The control information is stored in a

control memory. The control memoryis

programmed to initiate therequired

sequence of microoperations.

 The advantage that it can be optimizedto

produce a fast mode of operation.

 Compared with the hardwiredcontrol

operation is slow.

 Requires changes in the wiring among the

various components if the design has tobe

modified or changed.

 Required changes or modifications can be

done by updating the microprogramin

controlmemory.

The block diagram of the hardwired control unit is shown in Fig.It consists of two decoders, a sequence

counter, and a number of control logicgates.

 An instruction read from memory is placed in the instruction register (IR). It is divided into three

parts: The I bit, the operation code, and bits 0 through11.The operation code in bits 12 through 14 are

decoded with a 3 x 8 decoder. The eight outputs of the decoder are designated by the symbols D0

throughD7.Bit 15 of the instruction is transferred to a flip-flop designated by the symbolI.Bits 0 through

11 are applied to the control logicgates.The 4-bit sequence counter can count in binary from 0 through15.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

35

 The outputs of the counter are decoded into 16 timing signals T0throughT15.

 The sequence counter SC can be incremented or clearedsynchronously.

 The counter is incremented to provide the sequence of timing signals out of the 4 x 16decoder.

 As an example, consider the case where SC is incremented to provide timing signals T0, T1, T2, T3

and T4 in sequence. At time T4, SC is cleared to 0 if decoder output D3 isactive.

 This is expressed symbolically by thestatement

D3T4: SC 0

 The timing diagram of Fig. shows the time relationship of the controlsignals.

 The sequence counter SC responds to the positive transition of theclock.

 Initially, the CLR input of SC is active. The first positive transition of the clock clears SC to 0, which

in turn activates the timing signal T0 out of the decoder. T0 is active during one clockcycle.

 SC is incremented with every positive clock transition, unless its CLR input isactive.

 This produces the sequence of timing signals T0, T1, T2, T3, T4and so on, as shown in thediagram.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

36

 The last three waveforms in Fig. show how SC is cleared when D3T4 =1.

 Output D3 from the operation decoder becomes active at the end of timing signalT2.

 WhentimingsignalT4becomesactive,theoutputoftheANDgatethatimplementsthecontrol function

D3T4 becomesactive.

 This signal is applied to the CLR input of SC. On the next positive clock transition (the

one marked T4 in the diagram) the counter is cleared to0.

 This causes the timing signal T0 to become active instead of T5 that would have been active if SC were

incremented instead ofcleared.

5. Instruction Cycle:

 A program residing in the memory unit of the computer consists of a sequence ofinstructions.The

program is executed in the computer by going through a cycle for eachinstruction.

 Each instruction cycle in turn is subdivided into a sequence of sub cycles or phases.

 In the basic computer each instruction cycle consists of the followingphases:

1. Fetch an instruction frommemory.

2. Decode theinstruction.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

37

3. Read the effective address from memory if the instruction has an indirectaddress.

4. Execute theinstruction.

 Upon the completion of step 4, the control goes back to step 1 to fetch, decode,

and execute the nextinstruction.

Fetch and Decode:

 Initially, the program counter PC is loaded with the address of the first instruction in theprogram.The

sequence counter SC is cleared to 0, providing a decoded timing signalT0.

 The microoperations for the fetch and decode phases can be specified by the followingregister

transfer statements.

 Above Figure shows how the first two register transfer statements are implemented in the bussystem.To

provide the data path for the transfer of PC to AR we must apply timing signal T0 to achieve the

followingconnection:

 Placethecontent ofPContothebusbymakingthebusselectioninputsS2,S1,S0equalto010.

 Transfer the content of the bus to AR by enabling the LD input ofAR.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

38

 In order to implement the second statement it is necessary to use timing signal T1to provide the

following connections in the bussystem.

 Enable the read input ofmemory.

 Place the content of memory onto the bus by makingS2S1S0=111.

 Transfer the content of the bus to IR by enabling the LD input ofIR.

 Increment PC by enabling the INR input ofPC.

 MultipleinputORgatesareincludedinthediagrambecausethereareothercontrolfunctionsthat will

initiate similaroperations.

Determine the Type of Instruction:

 The timing signal that is active after the decoding isT3.

 During time T3, the control unit determine the type of instruction that was read from thememory.

 The flowchart of fig. shows the initial configurations for the instruction cycle and also how the

control determines the instruction cycle type after thedecoding.

 Decoder output D7 is equal to 1 if the operation code is equal to binary111.

 If D7=1, the instruction must be a register-reference or input-outputtype.

 If D7 = 0, the operation code must be one of the other seven values 000 through 110, specifying a

memory-reference instruction.

 Control then inspects the value of the first bit of the instruction, which is now available in flip-flopI.

 If D7 = 0 and I = 1, indicates a memory-reference instruction with an indirect address. So it is then

necessary to read the effective address frommemory.

 If D7 = 0 and I = 0, indicates a memory-reference instruction with a directaddress.

 If D7 = 1 and I = 0, indicates a register-referenceinstruction.

 If D7 = 01and I = 1, indicates an input-outputinstruction.

 The three instruction types are subdivided into four separatepaths.

 The selected operation is activated with the clock transition associated with timing signalT3.

This can be symbolized as follows:

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

39

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

40

Register-Reference Instructions:

 Register-reference instructions are recognized by the control when D7 = 1 andI=0.These instructions

use bits 0 through 11 of the instruction code to specify one of 12instructions.These 12 bits are available in IR(0-

11).The control functions and microoperations for the register-reference instructions are listed in Table.

 These instructions are executed with the clock transition associated with timing variableT3.Control

function needs the Boolean relation D7I’T3, which we designate for convenience by the symbol r.By assigning

the symbol Bito bit i of IR, all control functions can be simply denoted byrBi.

 For example, the instruction CLA has the hexadecimal code 7800, which gives the binary equivalent

0111 1000 0000 0000. The first bit is a zero and is equivalent toI’.The next three bits constitute the operation

code and are recognized from decoder outputD7.Bit 11 in IR is 1 and is recognized from B11. The control

function that initiates the microoperation for this instruction is D7I’T3 B11 =rB11.

 The execution of a register-reference instruction is completed at timeT3.The sequence counter SC is

cleared to 0 and the control goes back to fetch the next instruction with timing signalT0.

 The first seven register-reference instructions perform clear, complement, circular shift, and

increment microoperations on the AC or Eregisters.

 Thenextfourinstructionscauseaskipofthenextinstructioninsequencewhen a stated condition is satisfied.

The skipping of the instruction is achieved by incrementing PC onceagain.The condition control statements

must be recognized as part of the controlconditions.The AC is positive when the sign bit in AC(15) = 0; it is

negative when AC(15) = 1. The content of AC is zero (AC = 0) if all the flip-flops of the register arezero.The

HLT instruction clears a start-stop flip-flop S and stops the sequence counter fromcounting.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

41

6. Memory-Reference Instructions:

 Below table lists the seven memory-referenceinstructions.The decoded output Difor i = 0, 1, 2, 3, 4, 5,

and 6 from the operation decoder that belongs to each instruction is included in thetable.The effective address of

the instruction is in the address register AR and was placed there during timing signal T2 when I= 0, or during

timing signal T3 when I =1.The execution of the memory-reference instructions starts with timing signalT4.

The symbolic description of each instruction is specified in the table in terms of register transfer

notation.

AND to AC:

 This is an instruction that performs the AND logic operation on pairs of bits in AC and the

memory word specified by the effective address.

 The result of the operation is transferred toAC.

 The microoperations that execute this instructionare:

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

42

ADD to AC:

 This instruction adds the content of the memory word specified by the effective address to the value

ofAC.

 The sum is transferred into AC and the output carry Coutis transferred to the E (extended

accumulator)flip-flop.

 The microoperations needed to execute this instructionare

LDA:Load to AC

 This instruction transfers the memory word specified by the effective address toAC.

 The microoperations needed to execute this instructionare

STA:Store AC

 This instruction stores the content of AC into the memory word specified by the effectiveaddress.

 Since the output of AC is applied to the bus and the data input of memory is connected to the bus,

we can execute this instruction with onemicrooperation.

BUN:Branch Unconditionally

 This instruction transfers the program to the instruction specified by the effectiveaddress.

 The BUN instruction allows the programmer to specify an instruction out of sequence and we say

that the program branches (or jumps)unconditionally.

 The instruction is executed with onemicrooperation:

BSA:Branch and Save Return Address

 Thisinstructionisusefulforbranchingtoaportionoftheprogramcalledasubroutineorprocedure.

 Whenexecuted,theBSAinstructionstorestheaddressofthenextinstructioninsequence(whichis available

in PC) into a memory location specified by the effectiveaddress.

 The effective address plus one is then transferred to PC to serve as the address of the first

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

43

instruction in the subroutine.

 This operation was specified with the following registertransfer:

 A numerical example that demonstrates how this instruction is used with a subroutine is shown in

Fig.

 The BSA instruction is assumed to be in memory at address20.The I bit is 0 and the address part of the

instruction has the binary equivalent of135.After the fetch and decode phases, PC contains 21, which is the

address of the next instruction in the program (referred to as the return address). AR holds the effective

address135.This is shown in part (a) of thefigure.

 The BSA instruction performs the following numericaloperation:

 The result of this operation is shown in part (b) of thefigure.The return address21 is stored in memory

location 135 and control continues with the subroutine program starting from

address136.Thereturntotheoriginalprogram(ataddress21)isaccomplishedbymeansofanindirectBUN instruction

placed at the end of thesubroutine.

When this instruction is executed, control goes to the indirect phase to read the effective address at

location 135, where it finds the previously saved address21.

 When the BUN instruction is executed, the effective address 21 is transferred toPC.The next instruction

cycle finds PC with the value 21, so control continues to execute the instruction at the returnaddress.

 The BSA instruction must be executed with a sequence of twomicrooperations:

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

44

ISZ: Increment and Skip if Zero

 Thisinstructionincrementthewordspecifiedbytheeffectiveaddress,andiftheincrementedvalue is equal

to 0, PC is incremented by 1 to skip the next instruction in theprogram.

 Since it is not possible to increment a word inside the memory, it is necessary to read the word into

DR, increment DR, and store the word back intomemory.

 This is done with the following sequence ofmicrooperations:

Control Flowchart:

 A flowchart showing all microoperations for the execution of the seven memory-reference

instructions is shown in Fig.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

45

7. Input-Output and Interrupt:

 Instructions and data stored in memory must come from some inputdevice.Computational results

must be transmitted to the user through some outputdevice.

 Todemonstratethemostbasicrequirementsforinputandoutputcommunication,wewilluseasan

illustration a terminal unit with a keyboard andprinter.

Input-Output Configuration:

 The terminal sends and receives serialinformation.Each quantity of information has eight bits of

an alphanumericcode.The serial information from the keyboard is shifted into the input registerINPR.The

serial information for the printer is stored in the output registerOUTR.These two registers communicate

with a communication interface serially and with the AC inparallel.The input—output configuration is

shown in Fig.

 The input register INPR consists of eight bits and holds alphanumeric inputinformation.The 1-bit

input flag FGI is a controlflip-flop.The flag bit is set to 1 when new information is available in the input

device and is cleared to 0 when the information is accepted by thecomputer.The output register OUTR

works similarly but the direction of information flow isreversed.

 Initially, the output flag FGO is set to1.The computer checks the flag bit; if it is 1, the

information from AC is transferred in parallel to OUTR and FGO is cleared to0.The output device accepts

the coded information, prints the corresponding character, and when the operation is completed, it sets

FGO to1.

Input-Output Instructions:

 Input and output instructions are needed for transferring information to and from AC

register, for checking the flag bits, and for controlling the interruptfacility.Input-

outputinstructionshaveanoperationcode1111andarerecognizedbythecontrolwhenD7= 1 and I = 1.The

remaining bits of the instruction specify the particularoperation.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

46

 The control functions and microoperations for the input-output instructions are listed in Table.

 These instructions are executed with the clock transition associated with timing signalT3.Each

control function needs a Boolean relation D7IT3, which we designate for convenience by the symbol

p.The control function is distinguished by one of the bits in IR(6-11).

 By assigning the symbol Bi to bit i of IR, all control functions can be denoted by pBi for i =

6 though 11.The sequence counter SC is cleared to 0 when p = D7IT3 =1.The last two instructions set

and clear an interrupt enable flip-flopIEN.

Program Interrupt:

 Thecomputerkeepscheckingtheflagbit,andwhen itfindsitset,itinitiatesaninformationtransfer.

 Thedifferenceofinformationflowratebetweenthecomputerandthatoftheinput—outputdevice

makes this type of transferinefficient.

 An alternative to the programmed controlled procedure is to let the external device

inform the computer when it is ready for thetransfer.

 In the meantime the computer can be busy with other tasks. This type of transfer uses the

interrupt facility.

 While the computer is running a program, it does not check theflags.

 When a flag is set, the computer is momentarily interrupted from the currentprogram.

 The computer deviates momentarily from what it is doing to perform of the input or

outputtransfer.

 It then returns to the current program to continue what it was doing before theinterrupt.

 The interrupt enable flip-flop IEN can be set and cleared with twoinstructions.

 When IEN is cleared to 0 (with the IOF instruction), the flags cannot interrupt

thecomputer.

 When IEN is set to (with the ION instruction), the computer can beinterrupted.

 Thewaythattheinterruptishandledbythecomputercanbeexplainedbymeansoftheflowchartof Fig.

 An interrupt flip-flop R is included in the computer. When R = 0, the computer goes

through an instructioncycle.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

47

 During the execute phase of the instruction cycle IEN is checked by thecontrol.

 If it is 0, it indicates that the programmer does not want to use the interrupt,so control

continues with the next instructioncycle.

 If IEN is 1, control checks the flag bits. If both flags are 0, it indicates that neither the input

nor the output registers are ready for transfer of information. In this case,

controlcontinueswith the next instruction cycle.

 If either flag is set to 1 while 1EN = 1, flip-flop R is set to 1. At the end of the execute phase,

control checks the value of R, and if it is equal to 1, it goes to an interrupt cycle instead of an

instruction cycle.

Interrupt cycle:

 The interrupt cycle is a hardware implementation of a branch and save return

addressoperation.The return address available in PC is stored in a specificlocation.

This location may be a processor register, a memory stack, or a specific memorylocation.

An example that shows what happens during the interrupt cycle is shown in Fig.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

48

 When an interrupt occurs and R is set to 1 while the control is executing the instruction at

address 255.At this time, the returns address 256 is inPC.Theprogrammerhaspreviouslyplacedaninput—

outputserviceprograminmemorystartingfrom address 1120 and a BUN 1120 instruction at address 1. This

is shown in Fig.(a).When control reaches timing signal T0and finds that R = 1, it proceeds with the

interruptcycle.The content of PC (256) is stored in memory location 0, PC is set to 1, and R is cleared

to0.Thebranchinstructionataddress1causestheprogramtotransfertotheinput—outputservice program at

address1120.This program checks the flags, determines which flag is set, and then transfers the required

input or outputinformation.Once this is done, the instruction ION is executed to set IEN to 1 (to enable

further interrupts), and the program returns to the location where it wasinterrupted.This is shown in

Fig.(b).

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

49

UNIT – 02 – Part - A

MICRO PROGRAMMED CONTROL

Hardwired Control Unit:

When the control signals are generated by hardware using conventional logic design techniques,

the control unit is said to be hardwired.

Micro programmed control unit:

A control unit whose binary control variables are stored in memory is called a micro programmed

control unit.

Dynamic microprogramming:

A more advanced development known as dynamic microprogramming permits a microprogram to

be loaded initially from an auxiliary memory such as a magnetic disk. Control units that use dynamic

microprogramming employ a writable control memory. This type of memory can be used forwriting.

1. Control Memory:

Control Memory is the storage in the microprogrammed control unit to store the microprogram.

Writeable Control Memory:

Control Storage whose contents can be modified, allow the change in microprogram and

Instruction set can be changed or modified is referred as Writeable Control Memory.

Control Word:

The control variables at any given time can be represented by a control word string of 1 's and 0's

called a control word.

Microoperations:

 In computer central processing units, micro-operations (also known as a micro-ops or μops) are

detailed low-level instructions used in some designs to implement complex machine instructions

(sometimes termed macro-instructions in thiscontext).

Micro instruction:

 A symbolic microprogram can be translated into its binary equivalent by means of an

assembler.Each line of the assembly language microprogram defines a symbolicmicroinstruction.Each

symbolic microinstruction is divided into five fields: label, microoperations, CD, BR, andAD.

Micro program:

 A sequence of microinstructions constitutes amicroprogram. Since alterations of the

microprogram are not needed once the control unit is in operation, the control memory can be a read-only

memory(ROM).ROM words are made permanent during the hardware production of theunit.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

50

 The use of a micro program involves placing all control variables in words of ROM for use by

the control unit through successive readoperations.

 The content of the word in ROM at a given address specifies amicroinstruction.

Microcode:

 Microinstructions can be saved by employing subroutines that use common sections of

microcode.For example, the sequence of micro operations needed to generate the effective address of the

operand for an instruction is common to all memory referenceinstructions.This sequence could be a

subroutine that is called from within many other routines to execute the effective addresscomputation.

Organization of micro programmed control unit

 The general configuration of a micro-programmed control unit is demonstrated in the block

diagram of Figure.

The control memory is assumed to be a ROM, within which all control information is

permanentlystored.

Figure: Micro-programmed control organization

 The control memory address register specifies the address of the microinstruction, and

the control data register holds the microinstruction read frommemory.

 The microinstruction contains a control word that specifies one or more

microoperationsfor the data processor. Once these operations are executed, the control must determine the

nextaddress.

 The location of the next microinstruction may be the one next in sequence, or it may be

located somewhere else in the controlmemory.

 While the microoperations are being executed, the next address is computed in the next

address generator circuit and then transferred into the control address register to read the

nextmicroinstruction.

 Thus a microinstruction contains bits for initiating microoperations in the data

processor part and bits that determine the address sequence for the controlmemory.The next address

generator is sometimes called a micro-program sequencer, as it determines the address sequence that is

read from controlmemory.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

51

 Typical functions of a micro-program sequencer are incrementing the control address

register by one, loading into the control address register an address from control memory, transferring an

external address, or loading an initial address to start the control operations.The control data register

holds the present microinstruction while the next address is computed and read frommemory.

 The data register is sometimes called a pipelineregister.

 It allows the execution of the microoperations specified by the control word

simultaneously with the generation of the nextmicroinstruction.

 This configuration requires a two-phase clock, with one clock applied to the address

register and the other to the dataregister.

 The main advantage of the micro programmed control is the fact that once the

hardware configuration is established; there should be no need for further hardware or wiring changes.

 If we want to establish a different control sequence for the system, all we need to do is

specify a different set of microinstructions for controlmemory.

2. Address Sequencing:

 Microinstructions are stored in control memory in groups, with each group

specifyingaroutine.

 To appreciate the address sequencing in a micro-program control unit, let us specify the

steps that the control must undergo during the execution of a single computerinstruction.

Step-1:

 An initial address is loaded into the control address register when power is turned on in

thecomputer.

 This address is usually the address of the first microinstruction that activates the instruction

fetchroutine.

 The fetch routine may be sequenced by incrementing the control address register through

the rest of itsmicroinstructions.

 At the end of the fetch routine, the instruction is in the instruction register of the

computer.

Step-2:

 The control memory next must go through the routine that determines the effective

address of theoperand.

 A machine instruction may have bits that specify various addressing modes, such as

indirect address and indexregisters.

 The effective address computation routine in control memory can be reached through a

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

52

branch microinstruction, which is conditioned on the status of the mode bits of the

instruction.

 When the effective address computation routine is completed, the address of the operand

is available in the memory addressregister.

Step-3:

 The next step is to generate the microoperations that execute the instruction fetched

from memory.

 The microoperation steps to be generated in processor registers depend on the operation

code part of theinstruction.

 Each instruction has its own micro-program routine stored in a given location of control

memory.

 The transformation from the instruction code bits to an address in control memory where

the routine is located is referred to as a mappingprocess.

 A mapping procedure is a rule that transforms the instruction code into a control

memoryaddress.

Step-4:

 Once the required routine is reached, the microinstructions that execute the instruction

may be sequenced by incrementing the control addressregister.

 Micro-programs that employ subroutines will require an external register for storing the

returnaddress.

 Return addresses cannot be stored in ROM because the unit has no writingcapability.

 When the execution of the instruction is completed, control must return to the fetch

routine.

 This is accomplished by executing an unconditional branch microinstruction to the first

address of the fetchroutine.

In summary, the address sequencing capabilities required in a control memory are:

 Incrementing of the control addressregister.

 Unconditional branch or conditional branch, depending on status bitconditions.

 A mapping process from the bits of the instruction to an address for controlmemory.

 A facility for subroutine call andreturn.

Selection of address for control memory

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

53

Figure: Selection of address for controlmemory

 Above figure shows a block diagram of a control memory and the associated hardware

needed for selecting the next microinstructionaddress.

 The microinstruction in control memory contains a set of bits to initiate

microoperationsin computer registers and other bits to specify the method by which the next address is

obtained.

 The diagram shows four different paths from which the control address register (CAR)

receives theaddress.The incrementer increments the content of the control address register by one, to

select the next microinstruction insequence.

 Branching is achieved by specifying the branch address in one of the fields of the

microinstruction.Conditional branching is obtained by using part of the microinstruction to select a

specific status bit in order to determine itscondition.

 An external address is transferred into control memory via a mapping logiccircuit.

 The return address for a subroutine is stored in a special register whose value is then

used when the micro-program wishes to return from thesubroutine.

 The branch logic of figure provides decision-making capabilities in the controlunit.

 The status conditions are special bits in the system that provide parameter

informationsuch as the carry-out of an adder, the sign bit of a number, the mode bits of an instruction, and

input or output statusconditions.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

54

 The status bits, together with the field in the microinstruction that specifies a branch

address, control the conditional branch decisions generated in the branchlogic.

 A 1 output in the multiplexer generates a control signal to transfer the branch address

from the microinstruction into the control addressregister.

 A 0 output in the multiplexer causes the address register to beincremented.

Mapping of an Instruction

 A special type of branch exists when a microinstruction specifies a branch to the first

word in control memory where a microprogram routine for an instruction islocated.

 The status bits for this type of branch are the bits in the operation code part of the

instruction.

For example, a computer with a simple instruction format as shown in figure has an operation

code of four bits which can specify up to 16 distinct instructions.

 Assume further that the control memory has 128 words, requiring an address of seven

bits.

 One simple mapping process that converts the 4-bit operation code to a 7-bit address for

control memory is shown in figure.

 This mapping consists of placing a 0 in the most significant bit of the address,

transferring the four operation code bits, and clearing the two least significant bits of the control

addressregister.

 This provides for each computer instruction a microprogram routine with a capacity of

fourmicroinstructions.

 If the routine needs more than four microinstructions, it can use addresses 1000000

through 1111111. If it uses fewer than four microinstructions, the unused memory locations would be

available for otherroutines.

Figure: Mapping from instruction code to microinstruction address

 One can extend this concept to a more general mapping rule by using a ROM to specify

the mappingfunction.

 The contents of the mapping ROM give the bits for the control addressregister.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

55

 In this way the microprogram routine that executes the instruction can be placed in any

desired location in controlmemory.

 The mapping concept provides flexibility for adding instructions for control memory as

the needarises.

Computer Hardware Configuration

Figure: Computer hardware configuration

The block diagram of the computer is shown in Figure. It consists of

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

56

Two memoryunits:

Main memory -> for storing instructions and data, and Control memory -> for storing the

microprogram.

SixRegisters:

Processor unit register: AC(accumulator),PC(Program Counter), AR(Address Register), DR(Data

Register)

Control unit register: CAR (Control Address Register), SBR(Subroutine Register)

Multiplexers:

The transfer of information among the registers in the processor is done through multiplexers

rather than a common bus.

ALU:

The arithmetic, logic, and shift unit performs microoperations with data from AC and DR and

places the result in AC.

 DR can receive information from AC, PC, ormemory.

 AR can receive information from PC orDR.

 PC can receive information only fromAR.

 Input data written to memory come from DR, and data read from memory can go only to DR.

Microinstruction Format

The microinstruction format for the control memory is shown in figure 4.5. The 20 bits of the

microinstruction are divided into four functional parts as follows:

 The three fields F1, F2, and F3 specify microoperations for thecomputer.

The microoperations are subdivided into three fields of three bits each. The three bits in each field

are encoded to specify seven distinct microoperations. This gives a total of 21 microoperations.

 The CD field selects status bitconditions.

 The BR field specifies the type of branch to beused.

The AD field contains a branch address. The address field is seven bits wide, sincethe control

memory has 128 = 27words.

Figure: Microinstruction Format

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

57

 As an example, a microinstruction can specify two simultaneous microoperationsfrom

F2 and F3 and none fromF1.

DR M[AR] with F2 = 100 PC PC + 1 with F3 = 101

 The nine bits of the microoperation fields will then be 000 100101.

 The CD (condition) field consists of two bits which are encoded to specify four status

bit conditions as listed in Table.

Table: Condition Field

 The BR (branch) field consists of two bits. It is used, in conjunction with the address

field AD, to choose the address of the next microinstruction shown in Table4.2.

Table: Branch Field

Symbolic Microinstruction.

 Each line of the assembly language microprogram defines a symbolicmicroinstruction.

 Each symbolic microinstruction is divided into five fields: label, microoperations, CD,

BR, and AD. The fields specify the following Table4.3.

1. Label The label field may be empty or it may specify a symbolic

address. A label is terminated with a colon (:).

2. Microoperations It consists of one, two, or three symbols, separated by

commas, from those defined in Table 5.3. There may be no

more than one symbol from each F field. The NOP symbol is

used when the microinstruction has no microoperations.

This will be translated by the assembler to nine zeros.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

58

3. CD The CD field has one of the letters U, I, S, or Z.

4. BR The BR field contains one of the four symbols defined in

Table 5.2.

5. AD The AD field specifies a value for the address field of the

microinstruction in one of three possible ways:

i. With a symbolic address, this must also appear asa

label.

ii. With the symbol NEXT to designate the next address

insequence.

iii. When the BR field contains a RET or MAP symbol,

the AD field is left empty and is converted toseven

zeros by the assembler.

Table: Symbolic Microinstruction

Micro programmed sequencer for a control memory:

Microprogram sequencer:

 The basic components of a microprogrammed control unit are the control memory and the

circuits that select the next address.

 The address selection part is called a microprogramsequencer.

 A microprogram sequencer can be constructed with digital functions to suit a particular

application.

 To guarantee a wide range of acceptability, an integrated circuit sequencer must provide an

internal organization that can be adapted to a wide range ofapplications.

 The purpose of a microprogram sequencer is to present an address to the control memory so that a

microinstruction may be read andexecuted.

 Commercial sequencers include within the unit an internal register stack used for temporary

storage of addresses during microprogram looping and subroutinecalls.

 Some sequencers provide an output register which can function as the address register for the

controlmemory.The block diagram of the microprogram sequencer is shown in figure.

 There are two multiplexers in thecircuit.

 The first multiplexer selects an address from one of four sources and routes it into a control

address registerCAR.

 The second multiplexer tests the value of a selected status bit and the result of the test is

applied to an input logic circuit.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

59

 The output from CAR provides the address for the controlmemory.

 The content of CAR is incremented and applied to one of the multiplexer inputs and to the

subroutine registersSBR.

 The other three inputs to multiplexer 1 come from the address field of the present

microinstruction, from the output of SBR, and from an external source that maps the instruction.

 Although the figure 4.6 shows a single subroutine register, a typical sequencer will have a

register stack about four to eight levels deep. In this way, a number of subroutines can be active at the

sametime.

 The CD (condition) field of the microinstruction selects one of the status bits in the

secondmultiplexer.

 If the bit selected is equal to 1, the T (test) variable is equal to 1; otherwise, it is equal to 0.

 The T value together with the two bits from the BR (branch) field goes to an input logic

circuit.

 The input logic in a particular sequencer will determine the type of operations that are

available in theunit.

BR Input MUX 1 Load SBR

I1 I0 T S1 S0 L

0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0

0 1 0 1 0 0 0 0

0 1 0 1 1 0 1 1

1 0 1 0 X 1 0 0

1 1 1 1 X 1 1 0

Table: Input Logic Truth Table for Microprogram Sequencer

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

60

Figure: Microprogram Sequencer for a control memory

Boolean Function:

S0 = I0

S1 = I0I1 + I0’T L = I0’I1T

 Typical sequencer operations are: increment, branch or jump, call and return from

subroutine, load an external address, push or pop the stack, and other address sequencing operations.

 With three inputs, the sequencer can provide up to eight address sequencingoperations.

 Some commercial sequencers have three or four inputs in addition to the T input and

thus provide a wider range ofoperations.

UNIT – 02 – Part - B

3 2 10

SMU
1

S

0

X1

Loa
d

1 MUX
2

Tes
t

Increme
nt

L Cloc
k Selec

t

Micro
ops

Contro
l
Memor
y

A
D CD

 B
R

CAR

SB
R

l0Input

l1Logic

T

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

61

CENTRAL PROCESSING UNIT

1. General Register Organization:

The Central Processing Unit (CPU) is called the brain of the computer that performsdata-

processing operations. Figure 3.1 shows the three major parts of CPU.

·

Intermediate data is stored in the register set during the execution of the instructions. The

microoperations required for executing the instructions are performed by the arithmetic logic unit

whereas the control unit takes care of transfer of information among the registers and guides the ALU.

The control unit services the transfer of information among the registers and instructs the ALU about

which operation is to be performed. The computer instruction set is meant for providing the specifications

for the design of the CPU.

The design of the CPU largely, involveschoosing the hardware for implementing the machine

instructions.

The need for memory locations arises for storing pointers, counters, returnaddress,

temporary results and partial products. Memory access consumes the most of the time off an operation in

a computer. It is more convenient and more efficient to store these intermediate values in processor

registers.

 A common bus system is employed to contact registers that are included in the CPU in a large

number. Communications between registers is not only for direct data transfer but also for performing

various micro-operations. A bus organization for such CPU register shown in Figure 3.2, is connected to

two multiplexers (MUX) to form two buses A and B. The selected lines in each multiplexers select one

register of the input data for the particularbus.

·

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

62

OPERATION OF CONTROLUNIT:

The control unit directs the information flow through ALU by:

 Selecting various Components in thesystem

 Selecting the Function ofALU

Example: R1 <- R2 + R3

[1] MUX A selector (SELA): BUS A R2

[2] MUX B selector (SELB): BUS B R3

[3] ALU operation selector (OPR): ALU toADD

[4] Decoder destination selector (SELD): R1 OutBus

Control Word

Encoding of register selection fields

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

63

Encoding of ALU operations

Symbolic Designation

Microoperation SELA SELBSELDOPR Control Word

Stack organization:

 A stack is a storage device that stores information in such a manner that the item stored

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

64

last is the first itemretrieved.

 The stack in digital computers is essentially a memory unit with an address register that

can count only. The register that holds the address for the stack is called a stack pointer (SP) because its

value always points at the top item in thestack.

 The physical registers of a stack are always available for reading or writing. It is the

content of the word that is inserted ordeleted.

Figure: Block diagram of a 64-word stack

Register stack:

 A stack can be placed in a portion of a large memory or it can be organized as a

collection of a finite number of memory words or registers. Figure shows the organization of a 64- word

registerstack.

 The stack pointer register SP contains a binary number whose value is equal to the

address of the word that is currently on top of the stack. Three items are placed in the stack: A, B, and C,

in that order. Item C is on top of the stack so that the content of SP is now3.

 To remove the top item, the stack is popped by reading the memory word at address 3

and decrementing the content of SP. Item B is now on top of the stack since SP holds address 2.

 To insert a new item, the stack is pushed by incrementing SP and writing a word in the

next-higher location in thestack.

 In a 64-word stack, the stack pointer contains 6 bits because 26 =64.

 Since SP has only six bits, it cannot exceed a number greater than 63 (111111 in

binary). When 63 are incremented by 1, the result is 0 since 111111 + 1 = 1000000 in binary, but SP can

accommodate only the six least significantbits.

 Similarly, when 000000 is decremented by 1, the result is 111111. The one-bit register

FULL is set to 1 when the stack is full, and the one-bit register EMTY is set to 1 when the stack is empty

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

65

ofitems.

 DR is the data register that holds the binary data to be written into or read out of

thestack.

PUSH:

 If the stack is not full (FULL =0), a new item is inserted with a push operation. The

push operation consists of the following sequences ofmicrooperations:

SP ← SP+1 Increment stack pointer

M [SP]←DR WRITE ITEM ON TOP OF THESTACK

IF (SP = 0) then (FULL ← 1)Check is stack is full EMTY← 0 Mark the stack notempty

 The stack pointer is incremented so that it points to the address of next-higher word. A

memory write operation inserts the word from DR into the top of thestack.

 SP holds the address of the top of the stack and that M[SP] denotes the memory word

specified by the address presently available inSP.

 The first item stored in the stack is at address 1. The last item is stored at address 0. If

SP reaches 0, the stack is full of items, so FULL is set to 1. This condition is reached if the top item prior

to the last push was in location 63 and, after incrementing SP, the last item is stored in location0.

 Once an item is stored in location 0, there are no more empty registers in the stack. If

an item is written in the stack, obviously the stack cannot be empty, so EMTY is cleared to0.

POP:

 A new item is deleted from the stack if the stack is not empty (if EMTY = 0). The pop

operation consists of the following sequences ofmicrooperations:

DR ←M[SP] Read item on top of thestack

SP ← SP -1 Decrement stack pointer IF (SP = 0) then (EMTY ← 1)

Check if stack is empty FULL← 0 Mark the stack notfull

 The top item is read from the stack into DR. The stack pointer is then decremented. If

its value reaches zero, the stack is empty, so EMTY is set to1.

 This condition is reached if the item read was in location1.

 Once this item is read out, SP is decremented and reaches the value 0, which is the

initial value of SP. If a pop operation reads the item from location 0 and then SP is decremented, SP is

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

66

changes to 111111, which is equivalent to decimal63.

 In this configuration, the word in address 0 receives the last item in the stack. Note also

that an erroneous operation will result if the stack is pushed when FULL = 1 or popped when EMTY =1.

Memory Stack.

Figure: Computer memory with program, data, and stacksegments

 The implementation of a stack in the CPU is done by assigning a portion of memory to

a stack operation and using a processor register as a stackpointer.

 Figure shows a portion of computer memory partitioned into three segments: program,

data, andstack.

 The program counter PC points at the address of the next instruction in the program

which is used during the fetch phase to read aninstruction.

 The address registers AR points at an array of data which is used during the execute

phase to read anoperand.

 The stack pointer SP points at the top of the stack which is used to push or pop items

into or from thestack.

 The three registers are connected to a common address bus, and either one can provide

an address formemory.

 As shown in Figure, the initial value of SP is 4001 and the stack grows with decreasing

addresses. Thus the first item stored in the stack is at address 4000, the second item is stored at address

3999, and the last address that can be used for the stack is3000.

 We assume that the items in the stack communicate with a data registerDR.

PUSH

 A new item is inserted with the push operation as follows:

SP ← SP - 1 M[SP] ← DR

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

67

 The stack pointer is decremented so that it points at the address of the nextword.

 A memory write operation inserts the word from DR into the top of thestack.

POP

 A new item is deleted with a pop operation asfollows:

 DR←M[SP]SP← SP + 1

 The top item is read from the stack intoDR.

 The stack pointer is then incremented to point at the next item in thestack.

 The two microoperations needed for either the push or pop are (1) an access to memory

through SP, and (2) updatingSP.

 Which of the two microoperations is done first and whether SP is updated by

incrementing or decrementing depends on the organization of thestack.

 In figure the stack grows by decreasing the memory address. The stack may be

constructed to grow by increasing the memoryalso.

 The advantage of a memory stack is that the CPU can refer to it without having to

specify an address, since the address is always available and automatically updated in the stack pointer.

2. Instruction formats:

Insruction fields:

OP-code field - specifies the operation to be performed

Address field - designates memory address(s) or a processor register(s)

 Modefield - specifies the way the operand or the effective address isdetermined.

The number of address fields in the instruction format depends on the internal organization of

CPU

-The three most common CPU organizations:

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

68

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

69

3. Addressing Modes :

 Specifies a rule for interpreting or modifying the address field of the instruction (before

the operandis actuallyreferenced)

 Variety of addressingmodesto give programming flexibility to theuserto use the bits in the

address field of the instructionefficiently.

Types of Addressing Modes :

Register Indirect Mode

Instruction specifies a register which contains the memory address of the operand

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

70

 Saving instruction bits since register addres is shorter than the memoryaddress

 Slower to acquire an operand than both the register addressing or memoryaddressing

 EA = [IR(R)] ([x]: Content ofx)

Auto-increment or Auto-decrement features:

Same as the Register Indirect, but:

 When the address in the register is used to access memory, the value in the register is

incremented or decremented by 1 (after or before the execution of theinstruction)

Direct Address Mode

Instruction specifies the memory address which can be used directly to the physical memory

 Faster than the other memory addressingmodes

 Too many bits are needed to specify the address for a large physical memoryspace

 EA = IR(address), (IR(address): address field ofIR)

Indirect Addressing Mode

The address field of an instruction specifies the address of a memory location that contains the

address of the operand

 When the abbreviated address is used, large physicalmemorycan be addressed with a

relatively small number ofbits

 Slow to acquire an operand because of an additional memoryaccess

 EA =M[IR(address)]

Relative Addressing Modes

The Address fields of an instruction specifies the part of the address(abbreviated address) which

can be used along with a designated register to calculate the address of theoperand

PC Relative Addressing Mode(R = PC)

EA = PC + IR(address)

 Address field of the instruction isshort

 Large physical memory can be accessed with a small number of addressbits

Indexed Addressing Mode

XR: Index Register:

 EA = XR + IR(address)

Base Register Addressing Mode

BAR: Base Address Register:

 EA = BAR + IR(address)

ADDRESSINGMODES –EXAMPLES:

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

71

4. Data Transfer Instructions:

 Data transfer instructions move data from one place in the computer to another without

changing the datacontent.

 The most common transfers are between memory and processor registers, between

processor registers and input or output, and between the processor registersthemselves.

 The load instruction has been used mostly to designate a transfer from memory to a

processor register, usually anaccumulator.

 The store instruction designates a transfer from a processor register intomemory.

 The move instruction has been used in computers with multiple CPU registers to

designate a transfer from one register to another. It has also been used for data transfers between CPU

registers and memory or between two memorywords.

 The exchange instruction swaps information between two registers or a register and a

memoryword.

 The input and output instructions transfer data among processor registers and input or

outputterminals.

 The push and pop instructions transfer data between processor registers and a memory

stack.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

72

Data Transfer Instructions with Different Addressing Modes

5. Data Manipulation Instructions:

ThreeBasicTypes: Arithmeticinstructions

Logical and bit manipulation instructions

Shift instructions

Arithmetic Instructions:

 LogicalandBitManipulationInstructions:

ShiftInstructions:

Name Mnemonic

Logical shift

right

SHR

Logical shift

left

SHL

Arithmetic

shift right

SHRA

Arithmetic

shift left

SHLA

Rotate right ROR

:

Complement carry COMC
Enableinterrupt EI
Disableinterrupt DI cpe252

CLR
COM
AND OR
XOR
CLRC
SETC

Clear Complement
AND
OR
Exclusive-OR Clear

carry Set carry

Mnemonic Name
Name Mnemoni

c
Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with Carry ADDC
Subtract with Borrow SUBB
Negate(2’s
Complement)

NEG

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

73

6. Program Control Instructions :

 It is sometimes convenient to supplement the ALU circuit in the CPU with a status register

where status bit conditions be stored for further analysis. Status bits are also called condition-code bits or

flagbits.

 Figure shows the block diagram of an 8-bit ALU with a 4-bit status register. The four status

bits are symbolized by C, S, Z, and V. The bits are set or cleared as a result of an operation performed in

theALU.

Figure: Status Register Bits

 Bit C (carry) is set to 1 if the end carry C8 is 1. It is cleared to 0 if the carry is0.

 Bit S (sign) is set to 1 if the highest-order bit F7 is 1. It is set to 0 if set to 0 if the bit is 0.

Rotate left ROL

Rotate right

thru carry

RORC

Rotate left thru

carry

ROLC

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

74

 Bit Z (zero) is set to 1 if the output of the ALU contains all 0’s. it is cleared to 0

otherwise. In other words, Z = 1 if the output is zero and Z = 0 if the output is not zero.

 Bit V (overflow) is set to 1 if the exclusives-OR of the last two carries is equal to 1, and

cleared to 0 otherwise. This is the condition for an overflow when negative numbers are

in 2’s complement. For the 8-bit ALU, V = 1 if the output is greater than + 127 or less

than-128.

 The status bits can be checked after an ALU operation to determine certain relationships

that exist between the vales of A and B.

 If bit V is set after the addition of two signed numbers, it indicates an overflowcondition.

 If Z is set after an exclusive-OR operation, it indicates that A =B.

 A single bit in A can be checked to determine if it is 0 or 1 by masking all bits except the

bit in question and then checking the Z statusbit.

Program Control Instructions

CMP and TST instructions do not retain their results of operations(- and AND, respectively).

They only set or clear certain Flags.

ConditionalBranch Instructions:

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

75

MnemonicBranchcondition Testedcondition

BZ Branchifzero Z =1

BNZ Branch ifnotzero Z =0

BC Branchifcarry C =1

BNC Branch ifnocarry C =0

BP Branchifplus S =0

BM Branchifminus S =1

BV Branchifoverflow V =1

BNV Branchifnooverflow V =0

Unsigned compare conditions (A - B)

BHI Branchifhigher A >B

BHE Branchifhigherorequal A B

BLO Branchiflower A <B

BLOE Branchiflowerorequal A B

BE Branchifequal A =B

BNE Branch ifnotequal A B

Signed compare conditions (A - B)

BGT Branch ifgreaterthan A >B

BGE Branch if greater or equal A B

BLT Branch iflessthan A <B

BLE Branch if lessorequal A B

BE Branchifequal A =B

BNE Branch ifnotequal A B

Subroutine Call and Return:

Two Most Important Operations are Implied;

Branch to the beginning of the Subroutine

Same as the Branch or Conditional Branch

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

76

 Save the Return Address to get the address of the location in the Calling

Program upon exit from theSubroutine

 Locations for storing ReturnAddress:

 Fixed Location in thesubroutine(Memory)

 Fixed Location inmemory

 In a processorRegister

 In a memorystack

7. Program Interrupt:

 The concept of program interrupt is used to handle a variety of problems that arise out of

normal programsequence.

 Program interrupt refers to the transfer of program control from a currently running

program to another service program as a result of an external or internal generated request. Control returns

to the original program after the service program isexecuted.

 After a program has been interrupted and the service routine been executed, the CPU must

return to exactly the same state that it was when the interruptoccurred.

 Only if this happens will the interrupted program be able to resume exactly as if nothing

had happened.

 The state of the CPU at the end of the execute cycle (when the interrupt is recognized) is

determinedfrom:

 The content of the programcounter

 The content of all processorregisters

 The content of certain statusconditions

 The interrupt facility allows the running program to proceed until the input or output device

sets its ready flag. Whenever a flag is set to 1, the computer completes the execution of the instruction in

progress and then acknowledges theinterrupt.

 The result of this action is that the retune address is stared in location 0. The instruction in

location 1 is then performed; this initiates a service routine for the input or output transfer. The service

routine can be stored in location1.

 The service routine must have instructions to perform the followingtasks:

 Save contents of processorregisters.

 Check which flag isset.

 Service the device whose flag isset.

 Restore contents of processorregisters.

CALL
SP SP -1
M[SP] PC
PCEA

RTN
PC M[SP]
SP SP + 1

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

77

 Turn the interrupt facilityon.

 Return to the runningprogram.

Types of interrupts.:

There are three major types of interrupts that cause a break in the normal execution of a program.

They can be classified as:

 Externalinterrupts

 Internalinterrupts

 Softwareinterrupts

Externalinterrupts:

 External interrupts come from input-output (I/0) devices, from a timing device, from a

circuit monitoring the power supply, or from any other externalsource.

 Examples that cause external interrupts are I/0 device requesting transfer of data, I/odevice

finished transfer of data, elapsed time of an event, or power failure. Timeout interrupt may result from a

program that is in an endless loop and thus exceeded its timeallocation.

 Power failure interrupt may have as its service routine a program that transfers the

complete state of the CPU into a nondestructive memory in the few milliseconds before powerceases.

 External interrupts are asynchronous. External interrupts depend on external conditions that

are independent of the program being executed at thetime.

Internalinterrupts:

 Internal interrupts arise from illegal or erroneous use of an instruction or data. Internal

interrupts are also calledtraps.

 Examples of interrupts caused by internal error conditions are register overflow, attempt to

divide by zero, an invalid operation code, stack overflow, and protection violation. These error conditions

usually occur as a result of a premature termination of the instruction execution. The service program that

processes the internal interrupt determines the corrective measure to betaken.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

78

 Internal interrupts are synchronous with the program. . If the program is rerun, the internal

interrupts will occur in the same place eachtime.

Softwareinterrupts:

 A software interrupt is a special call instruction that behaves like an interrupt rather than a

subroutine call. It can be used by the programmer to initiate an interrupt procedure at any desired point in

theprogram.

 The most common use of software interrupt is associated with a supervisor call instruction.

This instruction provides means for switching from a CPU user mode to the supervisor mode. Certain

operations in the computer may be assigned to the supervisor mode only, as for example, a complex input

or output transfer procedure. A program written by a user must run in the usermode.

 When an input or output transfer is required, the supervisor mode is requested by means of

a supervisor call instruction. This instruction causes a software interrupt that stores the old CPU state and

brings in a new PSW that belongs to the supervisormode.

 The calling program must pass information to the operating system in order to specify the

particular taskrequested.

Reverse Polish Notation (RPN) with appropriateexample.

 The postfix RPN notation, referred to as Reverse Polish Notation (RPN), places the

operator after theoperands.

The following examples demonstrate the threerepresentations:

A +B Infixnotation

+AB Prefix or Polishnotation

A B+ Postfix or reverse Polishnotation

 The reverse Polish notation is in a form suitable for stackmanipulation.

The expression

A * B + C * D is written in reverse Polish notation as A B * C D * +

 The conversion from infix notation to reverse Polish notation must take into

consideration the operational hierarchy adopted for infixnotation.

 This hierarchy dictates that we first perform all arithmetic inside inner parentheses, then

inside outer parentheses, and do multiplication and division operations before addition and

subtractionoperations.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

79

Evaluation of Arithmetic Expressions

 Any arithmetic expression can be expressed in parenthesis-free Polish notation,

including reverse Polishnotation

(3 * 4) + (5 *6) 3 4 * 5 6 * +

UNIT – 03 – Part - A

DATA REPRESENTATION

3.1 Computer Data types:

Computer programs or application may use different types of data based on the problem or

requirement.

 Given below is different types of data that computer uses:

 Numeric data – Integer and Real numbers

 Non-numeric data – Character data, address data, logical data

Let’s study about each with further sub-categories.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

80

Numeric data:

It can be of the following two types:

 Integers

 Real Numbers

Real numbers can be represented as:

1. Fixed point representation

2. Floating point representation

Character data:

A sequence of character is called character data.

A character may be alphabetic (A-Z or a-z), numeric (0-9), special character (+, #, *, @, etc.) or

combination of all of these. A character is represented by group of bits.

 When set of multiple character are combined together they form a meaningful data. A character is

represented in standard ASCII format.Another popular format is EBCDIC used in large computer

systems.

 Example of character data

 Rajneesh1#

 229/3, xyZ

 Mission Milap – X/10

Logical data

A logical data is used by computer systems to take logical decisions.

Logical data is different from numeric or alphanumeric data in the way that numeric and

alphanumeric data may be associated with numbers or characters but logical data is denoted by either of

two values true (T) or false(F).

 You can see the example of logical data in construction of truth table in logic gates.

A logical data can also be statement consisting of numeric or character data with relational

symbols (>, <, =, etc.).

Character set

Character sets can of following types in computers:

 Alphabetic characters- It consists of alphabet characters A-Z or a-z.

 Numeric characters- It consists of digits from 0 to 9.

 Special characters- Special symbols are +, *, /, -, ., <, >, =, @, %, #, etc.

3.2. Number System:

Human beings use decimal (base 10) and duodecimal (base 12) number systems for counting and

measurements (probably because we have 10 fingers and two big toes). Computers use binary (base 2)

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

81

number system, as they are made from binary digital components (known as transistors) operating in two

states - on and off. In computing, we also use hexadecimal (base 16) or octal (base 8) number systems, as

a compact form for representing binary numbers.

3.2.1 Decimal (Base 10) Number System

Decimal number system has ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, called digits. It

uses positional notation. That is, the least-significant digit (right-most digit) is of the order of 10^0 (units

or ones), the second right-most digit is of the order of 10^1 (tens), the third right-most digit is of the order

of 10^2 (hundreds), and so on, where ^ denotes exponent. For example,

735 = 700 + 30 + 5 = 7×10^2 + 3×10^1 + 5×10^0

We shall denote a decimal number with an optional suffix D if ambiguity arises.

3.2.2 Binary (Base 2) Number System

Binary number system has two symbols: 0 and 1, called bits. It is also a positional notation, for

example,

10110B = 10000B + 0000B + 100B + 10B + 0B = 1×2^4 + 0×2^3 + 1×2^2 + 1×2^1 + 0×2^0

We shall denote a binary number with a suffix B. Some programming languages denote binary

numbers with prefix 0b or 0B (e.g., 0b1001000), or prefix b with the bits quoted (e.g., b'10001111').

A binary digit is called a bit. Eight bits is called a byte (why 8-bit unit? Probably because 8=23).

3.2.3 Hexadecimal (Base 16) Number System

Hexadecimal number system uses 16 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F,

called hex digits. It is a positional notation, for example,

A3EH = A00H + 30H + EH = 10×16^2 + 3×16^1 + 14×16^0

We shall denote a hexadecimal number (in short, hex) with a suffix H. Some programming

languages denote hex numbers with prefix 0x or 0X (e.g., 0x1A3C5F), or prefix x with hex digits quoted

(e.g., x'C3A4D98B').

Each hexadecimal digit is also called a hex digit. Most programming languages accept

lowercase 'a' to 'f' as well as uppercase 'A' to 'F'.

Hexadecimal Binary Decimal

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

82

Computers uses binary system in their internal operations, as they are built from binary digital

electronic components with 2 states - on and off. However, writing or reading a long sequence of binary

bits is cumbersome and error-prone (try to read this binary string: 1011 0011 0100 0011 0001 1101

0001 1000B, which is the same as hexadecimal B343 1D18H). Hexadecimal system is used as

a compact form or shorthand for binary bits. Each hex digit is equivalent to 4 binary bits, i.e., shorthand

for 4 bits, as follows:

3.2.4 Conversion from Hexadecimal to Binary

Replace each hex digit by the 4 equivalent bits (as listed in the above table), for examples,

A3C5H = 1010 0011 1100 0101B

102AH = 0001 0000 0010 1010B

3.2.5 Conversion from Binary to Hexadecimal

Starting from the right-most bit (least-significant bit), replace each group of 4 bits by the

equivalent hex digit (pad the left-most bits with zero if necessary), for examples,

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

83

1001001010B = 0010 0100 1010B = 24AH

10001011001011B = 0010 0010 1100 1011B = 22CBH

It is important to note that hexadecimal number provides a compact form or shorthand for

representing binary bits.

3.2.6 Conversion from Base r to Decimal (Base 10)

Given a n-digit base r number: dn-1dn-2dn-3...d2d1d0 (base r), the decimal equivalent is given by:

dn-1×rn-1 + dn-2×rn-2 + ... + d1×r1 + d0×r0

For examples,

A1C2H = 10×16^3 + 1×16^2 + 12×16^1 + 2 = 41410 (base 10)

10110B = 1×2^4 + 1×2^2 + 1×2^1 = 22 (base 10)

3.2.7 Conversion from Decimal (Base 10) to Base r

Use repeated division/remainder. For example,

To convert 261(base 10) to hexadecimal:

 261/16 => quotient=16 remainder=5

 16/16 => quotient=1 remainder=0

 1/16 => quotient=0 remainder=1 (quotient=0 stop)

 Hence, 261D = 105H (Collect the hex digits from the remainder in reverse order)

The above procedure is actually applicable to conversion between any 2 base systems. For example,

To convert 1023(base 4) to base 3:

 1023(base 4)/3 => quotient=25D remainder=0

 25D/3 => quotient=8D remainder=1

 8D/3 => quotient=2D remainder=2

 2D/3 => quotient=0 remainder=2 (quotient=0 stop)

 Hence, 1023(base 4) = 2210(base 3)

3.2.8 Conversion between Two Number Systems with Fractional Part

1. Separate the integral and the fractional parts.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

84

2. For the integral part, divide by the target radix repeatably, and collect the

ramainder in reverse order.

3. For the fractional part, multiply the fractional part by the target radix repeatably,

and collect the integral part in the same order.

Example 1: Decimal to Binary

Convert 18.6875D to binary

Integral Part = 18D

 18/2 => quotient=9 remainder=0

 9/2 => quotient=4 remainder=1

 4/2 => quotient=2 remainder=0

 2/2 => quotient=1 remainder=0

 1/2 => quotient=0 remainder=1 (quotient=0 stop)

 Hence, 18D = 10010B

Fractional Part = .6875D

 .6875*2=1.375 => whole number is 1

 .375*2=0.75 => whole number is 0

 .75*2=1.5 => whole number is 1

 .5*2=1.0 => whole number is 1

 Hence .6875D = .1011B

Combine, 18.6875D = 10010.1011B

Example 2: Decimal to Hexadecimal

Convert 18.6875D to hexadecimal

Integral Part = 18D

 18/16 => quotient=1 remainder=2

 1/16 => quotient=0 remainder=1 (quotient=0 stop)

 Hence, 18D = 12H

Fractional Part = .6875D

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

85

 .6875*16=11.0 => whole number is 11D (BH)

 Hence .6875D = .BH

Combine, 18.6875D = 12.BH

3.3. Computer Memory & Data Representation:

Computer uses a fixed number of bits to represent a piece of data, which could be a number, a

character, or others. A n-bit storage location can represent up to 2^n distinct entities. For example, a 3-bit

memory location can hold one of these eight binary patterns: 000, 001, 010, 011, 100, 101, 110, or 111.

Hence, it can represent at most 8 distinct entities. You could use them to represent numbers 0 to 7,

numbers 8881 to 8888, characters 'A' to 'H', or up to 8 kinds of fruits like apple, orange, banana; or up to

8 kinds of animals like lion, tiger, etc.

Integers, for example, can be represented in 8-bit, 16-bit, 32-bit or 64-bit. You, as the

programmer, choose an appropriate bit-length for your integers. Your choice will impose constraint on

the range of integers that can be represented. Besides the bit-length, an integer can be represented in

various representation schemes, e.g., unsigned vs. signed integers. An 8-bit unsigned integer has a range

of 0 to 255, while an 8-bit signed integer has a range of -128 to 127 - both representing 256 distinct

numbers.

It is important to note that a computer memory location merely stores a binary pattern. It is

entirely up to you, as the programmer, to decide on how these patterns are to be interpreted. For example,

the 8-bit binary pattern "0100 0001B" can be interpreted as an unsigned integer 65, or an ASCII

character 'A', or some secret information known only to you. In other words, you have to first decide

how to represent a piece of data in a binary pattern before the binary patterns make sense. The

interpretation of binary pattern is called data representation or encoding. Furthermore, it is important that

the data representation schemes are agreed-upon by all the parties, i.e., industrial standards need to be

formulated and straightly followed.

Once you decided on the data representation scheme, certain constraints, in particular, the

precision and range will be imposed. Hence, it is important to understand data representation to

write correct and high-performance programs.

3.4. Integer Representation:

Integers are whole numbers or fixed-point numbers with the radix point fixed after the least-

significant bit. They are contrast to real numbers or floating-point numbers, where the position of the

radix point varies. It is important to take note that integers and floating-point numbers are treated

differently in computers. They have different representation and are processed differently (e.g., floating-

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

86

point numbers are processed in a so-called floating-point processor). Floating-point numbers will be

discussed later.

Computers use a fixed number of bits to represent an integer. The commonly-used bit-lengths for

integers are 8-bit, 16-bit, 32-bit or 64-bit. Besides bit-lengths, there are two representation schemes for

integers:

1. Unsigned Integers: can represent zero and positive integers.

2. Signed Integers: can represent zero, positive and negative integers. Three

representation schemes had been proposed for signed integers:

1. Sign-Magnitude representation

2. 1's Complement representation

3. 2's Complement representation

You, as the programmer, need to decide on the bit-length and representation scheme for your

integers, depending on your application's requirements. Suppose that you need a counter for counting a

small quantity from 0 up to 200, you might choose the 8-bit unsigned integer scheme as there is no

negative numbers involved.

3.4.1 n-bit Unsigned Integers

Unsigned integers can represent zero and positive integers, but not negative integers. The value of

an unsigned integer is interpreted as "the magnitude of its underlying binary pattern".

Example 1: Suppose that n=8 and the binary pattern is 0100 0001B, the value of this unsigned integer

is 1×2^0 + 1×2^6 = 65D.

Example 2: Suppose that n=16 and the binary pattern is 0001 0000 0000 1000B, the value of this

unsigned integer is 1×2^3 + 1×2^12 = 4104D.

Example 3: Suppose that n=16 and the binary pattern is 0000 0000 0000 0000B, the value of this

unsigned integer is 0.

An n-bit pattern can represent 2^n distinct integers. An n-bit unsigned integer can represent

integers from 0 to (2^n)-1, as tabulated below:

n Minimum Maximum

8 0 (2^8)-1 (=255)

16 0 (2^16)-1 (=65,535)

32 0 (2^32)-1 (=4,294,967,295) (9+ digits)

64 0 (2^64)-1 (=18,446,744,073,709,551,615) (19+ digits)

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

87

3.4.2 Signed Integers

Signed integers can represent zero, positive integers, as well as negative integers. Three

representation schemes are available for signed integers:

1. Sign-Magnitude representation

2. 1's Complement representation

3. 2's Complement representation

In all the above three schemes, the most-significant bit (msb) is called the sign bit. The sign bit is

used to represent the sign of the integer - with 0 for positive integers and 1 for negative integers.

The magnitude of the integer, however, is interpreted differently in different schemes.

3.4.3 n-bit Sign Integers in Sign-Magnitude Representation

In sign-magnitude representation:

 The most-significant bit (msb) is the sign bit, with value of 0 representing positive

integer and 1 representing negative integer.

 The remaining n-1 bits represents the magnitude (absolute value) of the integer. The

absolute value of the integer is interpreted as "the magnitude of the (n-1)-bit binary

pattern".

Example 1 : Suppose that n=8 and the binary representation 0 100 0001B.

 Sign bit is 0 ⇒ positive

 Absolute value is 100 0001B = 65D

 Hence, the integer is +65D

Example 2 : Suppose that n=8 and the binary representation 1 000 0001B.

 Sign bit is 1 ⇒ negative

 Absolute value is the complement of 000 0001B plus 1, i.e., 111 1110B + 1B = 127D

 Hence, the integer is -127D

Example 3 : Suppose that n=8 and the binary representation 0 000 0000B.

 Sign bit is 0 ⇒ positive

 Absolute value is 000 0000B = 0D

 Hence, the integer is +0D

Example 4 : Suppose that n=8 and the binary representation 1 111 1111B.

 Sign bit is 1 ⇒ negative

 Absolute value is the complement of 111 1111B plus 1, i.e., 000 0000B + 1B = 1D

 Hence, the integer is -1D

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

88

The drawbacks of sign-magnitude representation are:

1. There are two representations (0000 0000B and 1000 0000B) for the number zero,

which could lead to inefficiency and confusion.

2. Positive and negative integers need to be processed separately.

3.4.4 n-bit Sign Integers in 1's Complement Representation

In 1's complement representation:

 Again, the most significant bit (msb) is the sign bit, with value of 0 representing positive

integers and 1 representing negative integers.

 The remaining n-1 bits represents the magnitude of the integer, as follows:

 for positive integers, the absolute value of the integer is equal to "the magnitude of

the (n-1)-bit binary pattern".

 for negative integers, the absolute value of the integer is equal to "the magnitude of

the complement (inverse) of the (n-1)-bit binary pattern" (hence called 1's

complement).

Example 1: Suppose that n=8 and the binary representation 0 100 0001B.

 Sign bit is 0 ⇒ positive

 Absolute value is 100 0001B = 65D

 Hence, the integer is +65D

Example 2: Suppose that n=8 and the binary representation 1 000 0001B.

 Sign bit is 1 ⇒ negative

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

89

 Absolute value is the complement of 000 0001B, i.e., 111 1110B = 126D

 Hence, the integer is -126D

Example 3: Suppose that n=8 and the binary representation 0 000 0000B.

 Sign bit is 0 ⇒ positive

 Absolute value is 000 0000B = 0D

 Hence, the integer is +0D

Example 4: Suppose that n=8 and the binary representation 1 111 1111B.

 Sign bit is 1 ⇒ negative

 Absolute value is the complement of 111 1111B, i.e., 000 0000B = 0D

 Hence, the integer is -0D

Again, the drawbacks are:

1. There are two representations (0000 0000B and 1111 1111B) for zero.

2. The positive integers and negative integers need to be processed separately.

3.4.5 n-bit Sign Integers in 2's Complement Representation

In 2's complement representation:

 Again, the most significant bit (msb) is the sign bit, with value of 0 representing positive

integers and 1 representing negative integers.

 The remaining n-1 bits represents the magnitude of the integer, as follows:

 for positive integers, the absolute value of the integer is equal to "the magnitude of

the (n-1)-bit binary pattern".

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

90

 for negative integers, the absolute value of the integer is equal to "the magnitude of

the complement of the (n-1)-bit binary pattern plus one" (hence called 2's

complement).

Example 1: Suppose that n=8 and the binary representation 0 100 0001B.

 Sign bit is 0 ⇒ positive

 Absolute value is 100 0001B = 65D

 Hence, the integer is +65D

Example 2: Suppose that n=8 and the binary representation 1 000 0001B.

 Sign bit is 1 ⇒ negative

 Absolute value is the complement of 000 0001B plus 1, i.e., 111 1110B + 1B = 127D

 Hence, the integer is -127D

Example 3: Suppose that n=8 and the binary representation 0 000 0000B.

 Sign bit is 0 ⇒ positive

 Absolute value is 000 0000B = 0D

 Hence, the integer is +0D

Example 4: Suppose that n=8 and the binary representation 1 111 1111B.

 Sign bit is 1 ⇒ negative

 Absolute value is the complement of 111 1111B plus 1, i.e., 000 0000B + 1B = 1D

 Hence, the integer is -1D

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

91

3.4.6 Computers use 2's Complement Representation for Signed Integers

We have discussed three representations for signed integers: signed-magnitude, 1's complement

and 2's complement. Computers use 2's complement in representing signed integers. This is because:

1. There is only one representation for the number zero in 2's complement, instead of

two representations in sign-magnitude and 1's complement.

2. Positive and negative integers can be treated together in addition and subtraction.

Subtraction can be carried out using the "addition logic".

Example 1: Addition of Two Positive Integers: Suppose that n=8, 65D + 5D = 70D

65D → 0100 0001B

 5D → 0000 0101B(+

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

92

 0100 0110B → 70D (OK)

Example 2: Subtraction is treated as Addition of a Positive and a Negative

Integers: Suppose that n=8, 5D - 5D = 65D + (-5D) = 60D

65D → 0100 0001B

-5D → 1111 1011B(+

 0011 1100B → 60D (discard carry - OK)

Example 3: Addition of Two Negative Integers: Suppose that n=8, -65D - 5D = (-65D) +

(-5D) = -70D

-65D → 1011 1111B

 -5D → 1111 1011B(+

 1011 1010B → -70D (discard carry - OK)

Because of the fixed precision (i.e., fixed number of bits), an n-bit 2's complement signed integer has a

certain range. For example, for n=8, the range of 2's complement signed integers is -128 to +127. During

addition (and subtraction), it is important to check whether the result exceeds this range, in other words,

whether overflow or underflow has occurred.

Example 4: Overflow: Suppose that n=8, 127D + 2D = 129D (overflow - beyond the range)

127D → 0111 1111B

 2D → 0000 0010B(+

 1000 0001B → -127D (wrong)

Example 5: Underflow: Suppose that n=8, -125D - 5D = -130D (underflow - below the range)

-125D → 1000 0011B

 -5D → 1111 1011B(+

 0111 1110B → +126D (wrong)

The following diagram explains how the 2's complement works. By re-arranging the number line, values

from -128 to +127 are represented contiguously by ignoring the carry bit.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

93

3.4.7 Range of n-bit 2's Complement Signed Integers

An n-bit 2's complement signed integer can represent integers from -2^(n-1) to +2^(n-1)-1, as

tabulated. Take note that the scheme can represent all the integers within the range, without any gap. In

other words, there is no missing integers within the supported range.

n minimum maximum

8 -(2^7) (=-128) +(2^7)-1 (=+127)

16 -(2^15) (=-32,768) +(2^15)-1 (=+32,767)

32 -(2^31) (=-2,147,483,648) +(2^31)-1 (=+2,147,483,647)(9+ digits)

64 -(2^63) (=-9,223,372,036,854,775,808) +(2^63)-1 (=+9,223,372,036,854,775,807)(18+ digits)

3.4.8 Decoding 2's Complement Numbers

1. Check the sign bit (denoted as S).

2. If S=0, the number is positive and its absolute value is the binary value of the

remaining n-1 bits.

3. If S=1, the number is negative. you could "invert the n-1 bits and plus 1" to get the

absolute value of negative number.

Alternatively, you could scan the remaining n-1 bits from the right (least-significant

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

94

bit). Look for the first occurrence of 1. Flip all the bits to the left of that first

occurrence of 1. The flipped pattern gives the absolute value. For example,

4. n = 8, bit pattern = 1 100 0100B

5. S = 1 → negative

6. Scanning from the right and flip all the bits to the left of the first occurrence of 1 ⇒011

1100B = 60D

Hence, the value is -60D

3.5. Floating-Point Number Representation:

A floating-point number (or real number) can represent a very large (1.23×10^88) or a very small

(1.23×10^-88) value. It could also represent very large negative number (-1.23×10^88) and very small

negative number (-1.23×10^88), as well as zero, as illustrated:

A floating-point number is typically expressed in the scientific notation, with a fraction (F), and

an exponent (E) of a certain radix (r), in the form of F×r^E. Decimal numbers use radix of 10 (F×10^E);

while binary numbers use radix of 2 (F×2^E).

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

95

Representation of floating point number is not unique. For example, the number 55.66 can be

represented as 5.566×10^1, 0.5566×10^2, 0.05566×10^3, and so on. The fractional part can

be normalized. In the normalized form, there is only a single non-zero digit before the radix point. For

example, decimal number 123.4567 can be normalized as 1.234567×10^2; binary

number 1010.1011B can be normalized as 1.0101011B×2^3.

It is important to note that floating-point numbers suffer from loss of precision when represented

with a fixed number of bits (e.g., 32-bit or 64-bit). This is because there are infinite number of real

numbers (even within a small range of says 0.0 to 0.1). On the other hand, a n-bit binary pattern can

represent a finite 2^n distinct numbers. Hence, not all the real numbers can be represented. The nearest

approximation will be used instead, resulted in loss of accuracy.

It is also important to note that floating number arithmetic is very much less efficient than integer

arithmetic. It could be speed up with a so-called dedicated floating-point co-processor. Hence, use

integers if your application does not require floating-point numbers.

In computers, floating-point numbers are represented in scientific notation of fraction (F)

and exponent (E) with a radix of 2, in the form of F×2^E. Both E and F can be positive as well as negative.

Modern computers adopt IEEE 754 standard for representing floating-point numbers. There are two

representation schemes: 32-bit single-precision and 64-bit double-precision.

3.5.1 IEEE-754 32-bit Single-Precision Floating-Point Numbers

In 32-bit single-precision floating-point representation:

 The most significant bit is the sign bit (S), with 0 for positive numbers and 1 for

negative numbers.

 The following 8 bits represent exponent (E).

 The remaining 23 bits represents fraction (F).

Normalized Form

Let's illustrate with an example, suppose that the 32-bit pattern is 1 1000 0001 011 0000 0000

0000 0000 0000, with:

 S = 1

 E = 1000 0001

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

96

 F = 011 0000 0000 0000 0000 0000

In the normalized form, the actual fraction is normalized with an implicit leading 1 in the form

of 1.F. In this example, the actual fraction is 1.011 0000 0000 0000 0000 0000 = 1 + 1×2^-2 +

1×2^-3 = 1.375D.

The sign bit represents the sign of the number, with S=0 for positive and S=1 for negative number.

In this example with S=1, this is a negative number, i.e., -1.375D.

In normalized form, the actual exponent is E-127 (so-called excess-127 or bias-127). This is

because we need to represent both positive and negative exponent. With an 8-bit E, ranging from 0 to

255, the excess-127 scheme could provide actual exponent of -127 to 128. In this example, E-127=129-

127=2D.

Hence, the number represented is -1.375×2^2=-5.5D.

De-Normalized Form

Normalized form has a serious problem, with an implicit leading 1 for the fraction, it cannot

represent the number zero! Convince yourself on this!

De-normalized form was devised to represent zero and other numbers.

For E=0, the numbers are in the de-normalized form. An implicit leading 0 (instead of 1) is used

for the fraction; and the actual exponent is always -126. Hence, the number zero can be represented

with E=0 and F=0 (because 0.0×2^-126=0).

We can also represent very small positive and negative numbers in de-normalized form with E=0.

For example, if S=1, E=0, and F=011 0000 0000 0000 0000 0000. The actual fraction is 0.011=1×2^-

2+1×2^-3=0.375D. Since S=1, it is a negative number. With E=0, the actual exponent is -126. Hence the

number is -0.375×2^-126 = -4.4×10^-39, which is an extremely small negative number (close to

zero).

Summary

In summary, the value (N) is calculated as follows:

 For 1 ≤ E ≤ 254, N = (-1)^S × 1.F × 2^(E-127). These numbers are in the so-

called normalized form. The sign-bit represents the sign of the number. Fractional part

(1.F) are normalized with an implicit leading 1. The exponent is bias (or in excess) of 127,

so as to represent both positive and negative exponent. The range of exponent is -

126 to +127.

 For E = 0, N = (-1)^S × 0.F × 2^(-126). These numbers are in the so-

called denormalized form. The exponent of 2^-126 evaluates to a very small number.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

97

Denormalized form is needed to represent zero (with F=0 and E=0). It can also represents

very small positive and negative number close to zero.

 For E = 255, it represents special values, such as ±INF (positive and negative infinity)

and NaN (not a number). This is beyond the scope of this article.

Example 1: Suppose that IEEE-754 32-bit floating-point representation pattern is 0 10000000 110

0000 0000 0000 0000 0000.

Sign bit S = 0 ⇒ positive number

E = 1000 0000B = 128D (in normalized form)

Fraction is 1.11B (with an implicit leading 1) = 1 + 1×2^-1 + 1×2^-2 = 1.75D

The number is +1.75 × 2^(128-127) = +3.5D

Example 2: Suppose that IEEE-754 32-bit floating-point representation pattern is 1 01111110 100

0000 0000 0000 0000 0000.

Sign bit S = 1 ⇒ negative number

E = 0111 1110B = 126D (in normalized form)

Fraction is 1.1B (with an implicit leading 1) = 1 + 2^-1 = 1.5D

The number is -1.5 × 2^(126-127) = -0.75D

Example 3: Suppose that IEEE-754 32-bit floating-point representation pattern is 1 01111110 000

0000 0000 0000 0000 0001.

Sign bit S = 1 ⇒ negative number

E = 0111 1110B = 126D (in normalized form)

Fraction is 1.000 0000 0000 0000 0000 0001B (with an implicit leading 1) = 1 + 2^-23

The number is -(1 + 2^-23) × 2^(126-127) = -0.500000059604644775390625 (may not be exact in

decimal!)

Example 4 (De-Normalized Form): Suppose that IEEE-754 32-bit floating-point representation

pattern is 1 00000000 000 0000 0000 0000 0000 0001.

Sign bit S = 1 ⇒ negative number

E = 0 (in de-normalized form)

Fraction is 0.000 0000 0000 0000 0000 0001B (with an implicit leading 0) = 1×2^-23

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

98

The number is -2^-23 × 2^(-126) = -2×(-149) ≈ -1.4×10^-45

UNIT – 03 – Part - B

COMPUTER ARITHMETIC

Arithmetic instructions in digital computers manipulate data to produce results

necessary for the solution of computational problems. These instructions perform arithmetic

calculations and are responsible for the bulk of activity involved in processing data in a

computer. The four basic arithmetic operations are addition, subtraction, multiplication and

division. From these four basic operations, it is possible to formulate other arithmetic functions

and solve scientific problems by means of numerical analysis methods. An arithmetic processor

is the part of a processor unit that executes arithmetic operations. An arithmetic instruction

mayspecifybinaryordecimaldata,andineachcasethedatamaybeinfixed-pointorfloating-

pointform.Fixed-

pointnumbersmayrepresentintegersorfractions.Negativenumbersmaybeinsigned-magnitudeor

signed-complement representation. The arithmetic processor is very simple if only a binary

fixed-point odd instruction is included. It would be more complicated if it includes all four

arithmetic operations for binary and decimal data in fixed-point and floating-point

representation.

3.6 Addition and Subtraction:

There are three ways of representing negative fixed-point binary numbers: signed-

magnitude, signed-l's complement, or signed-2's complement. Most computers use the signed-

2'scomplement representation when performing arithmetic operations with integers. For

floating- point operations, most computers use the signed-magnitude representation for the

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

99

mantissa. In this section we develop the addition and subtraction algorithms for data

represented in signed-magnitude and again for data represented in signed-2's complement.

Addition and Subtraction with Signed-Magnitude Data

The representation of numbers in signed-magnitude is familiar because it is used in

everyday arithmetic calculations. The procedure for adding or subtracting two signed binary

numbers with paper and pencil Is simple and straight-forward. We designate the magnitude of

the two numbers by A and B. When the signed numbers are added or subtracted, we find that

there are eight different conditions to consider, depending on the sign of the numbers and the

operation performed. These conditions are listed in the first column of Table. The other columns

in the table show the actual operation to be performed with the magnitude of the numbers. The

last column is needed to prevent a negative zero. In other words, when two equal numbers are

subtracted, the result should be +0not–0.

The algorithms for addition and subtraction are derived from the table and can be stated

as follows (thewordsinsideparenthesesshouldbeusedforthesubtractionalgorithm):

Addition (subtraction)algorithm: when the signs of A and B are identical (different),add

the two magnitudes and attach the sign of A to the result. When the signs of A and B are

different (identical),compare the magnitudes and subtract the smaller number from the larger.

Choose the sign of the result to be the same as A if A > B or the complement of the sign of A if A

< B. If the two magnitudes are equal, subtract B from A and make the sign of the result positive.

The two algorithms are similar except for

thesigncomparison.Theproceduretobefollowedforidenticalsignsintheadditionalgorithmisthesam

easfordifferentsigns in the subtraction algorithm, and vice versa.

Hardware Implementation

To implement the two arithmetic operations with hardware, it is first necessary that the

two numbers

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

100

bestoredinregisters.LetAandBbetworegistersthatholdthemagnitudesofthenumbers,andAsandBs

be two flip-flops that hold the corresponding signs. The result of the operation may be

transferred to a thirdregister: however, a saving is achieved if the result is transferred into A and

As. Thus A and As togetherform an accumulator register. Consider nowthe hardware

implementation of the algorithms above. First, aparallel-adder is needed toperform the micro-

operation A + B. Second, a comparator circuit is needed toestablish if A > B, A = B, or A < B.

Third, two parallel-subtractor circuits are needed to perform themicro- operations A - B and B -

A. The sign relationship can be determined from an exclusive-OR gate withA s and B s as inputs.

This procedure requires a magnitude comparator, an adder, and two subtractors.However, a

different procedure can be found that requires less equipment. First, we know that

subtractioncan be accomplished by means of complement andadd.Second,theresult of a

comparison can bedetermined from the end carry after the subtraction. Careful investigation of

the alternatives reveals that theuse of 2's complement for subtraction and comparison is an

efficient procedure that requires only an adderand a complementor. Figure shows a block

diagram of the hardware for implementing the addition andsubtractionoperations.

It consists of registers A and B and sign flip-flops Asand Bs. Subtraction is done by

adding A tothe 2'scomplement of B. The output carry is transferred to flip-flop E, where it can be

checked to determine the relative magnitudes of the two numbers. The add-overflow flip-flop

AVF holds the overflow bit when A and B are added. The A register provides other micro-

operations that may be needed when we specify the sequence of steps in the algorithm.

The addition of A plus B is done through the parallel adder. The S(sum) output of the

adder is applied to the input of the A register. The complementor provides an output of B or the

complement of B depending on the state of the mode control M. The complementor consists of

exclusive-OR gates and the parallel adder consists of full-adder circuits. The M signal is also

applied to the input carry of the adder. When M = 0, the output of B is transferred to the adder,

the input carry is 0, and the output of the adder is equal to the sum A+B. When M = 1, the 2’s

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

101

complement of B is applied to the adder the input carry is 1, and output S = A +B’—1.Thisis

equal to A plus the2'scomplement of B, which is equivalent to the subtraction A—B.

Hardware Algorithm

The flow chart for the hardware algorithm is presented in Figure. The two signs As,

and Bs are compared by an exclusive-OR gale. If the output of the gate is 0, the signs are

identical; if it is 1, the signs are different for an add operation, identical signs dictate that

the magnitudes be added.

For a subtract operation, different signs dictate that the magnitudes be added. The

magnitudes are added with a micro-operation EA A +B where EA is a register that combines

E and A. The carry in E after the addition constitutes an overflow if it is equal to 1 and it is

transferred into the add-overflow flip-flop AVF. The two magnitudes are subtracted if the signs

are different for an add operation or identical for a subtract operation. The magnitudes are

subtracted by adding A to the 2's complement of B. No overflow can occur if the numbers are

subtracted. A 1 in E indicates that A ≥ B and the number in A is the correctresult. If this number

is zero, the sign As must be made positive to avoid a –0. A 0 in E indicates that A < B.For this

case it is necessary to take the 2's complement o fthe value in A. This operation can be done

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

102

with one micro-operation A A’ + 1. In other paths of the flowchart, the sign of the result is the

same asthe sign of A, sono change in As is required. However, when A < B, the sign of the result

is the complement of the original sign of A. It is the necessary to complement As to obtain the

correct sign. The final result is found in register A and its sign in As.The value in AVF provides

an overflowindication. The final value of E is immaterial.

AdditionandSubtractionwithSigned-2’sComplementData

The signed-2's complement representation of numbers together with arithmetic

algorithms for addition and subtraction are summarized here for easy reference. The leftmost

bit of a binary number represents the sign bit: 0 for positive and 1 for negative. If the sign bit is

1, the entire number is represented in 2's complement form. Thus +33 is represented as

00100001 and -33 as 11011111. Note that 11011111 is the 2's complementof00100001,and vice

versa.

The addition of two numbers in signed-2's complement form consists of adding the

numbers with the sign bits treated the same as the other bits of the number. A carry-out of the

sign-bit position is discarded. The subtraction consists of first taking the 2's complement of the

subtrahend and then adding it to the minuend. When two numbers of n digits each are added

and the sum occupies n + 1 digits, we say that an overflow occurred. An over flow can be

detected by inspecting the last two carries out of the addition. When the two carries are applied

to an exclusive-OR gate, the overflow is detected when the output of the gate is equal to 1. The

register configuration for the hardware implementation is shown in Figure. The sign bits are not

separated from the rest of the registers. We name the A register AC and the B register BR. The

left most bit in AC and BR represent the sign bits of the numbers. The two sign bits are added or

subtracted together with the other bits in the complementor and parallel adder. The overflow

flip-flop V is set to 1 if there is an overflow. The output carry in this case is discarded.

The algorithm for adding and subtracting two binary numbers in signed-2's complement

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

103

representation is shown in the flowchart of Figure. The sum is obtained by adding the contents

of AC and BR (including their sign bits). The overflow bit V is set to 1 if the exclusive-OR of the

last two carries is 1,and it is cleared to 0 otherwise. The subtraction operation is accomplished

by adding the content of AC to the 2'scomplement of BR. Taking the 2's complement of BR has

the effect of changing a positive number to negative, and vice versa. An overflowmustbechecked

during this operation because the two numbersadded could have the same sign. The

programmer must realize that if an overflow occurs, there will be anerroneousresultin theAC

register.

Comparing this algorithm with its signed-magnitude counterpart, we note that

itismuchsimpler to addand subtract numbers if negative numbers are maintained in signed-2's

complement representation. For thisreasonmostcomputers adoptthisrepresentation

overthemorefamiliarsigned-magnitude.

3.7. MultiplicationAlgorithm

Multiplication of two fixed-point binary numbers in signed-magnitude

representation is done withpaper and pencil by a process of successive shift and add

operations. This process is best illustratedwithanumericalexample.

The process consists of looking at successive bits of the multiplier, least significant

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

104

bit first. If themultiplier bit is a 1, the multiplicand is copied down; otherwise, zeros are

copied down. The numberscopied down in successive lines are shifted one position to the

left from the previous number. Finally,the numbers are added and their sum forms the

product. The sign of the product is determined from thesigns of the multiplicand and

multiplier. If they are alike, the sign of the product is positive. If they are unlike, the sign of

the product is negative.

Hardware Implementation for Signed-Magnitude Data

When multiplication is implemented in a digital computer, it is convenient to change

the

processslightly.First,insteadofprovidingregisterstostoreandaddsimultaneouslyasmanybinar

ynumbersas there are bits in the multiplier, it is convenient to provide an adder for the

summation of only two binary numbers and successively accumulate the partial products in

a register. Second, instead of shifting the multiplicand to the left, the partial product is

shifted to the right, which results in

leavingthepartialproductandthemultiplicandintherequiredrelativepositions.Third,whenthec

orresponding bit of the multiplier is 0, there is no need to add all zeros to the partial

product since it will not alter its value. The hardware for multiplication consists of the

equipment shown in Figure. The multiplier is stored in the Q register and its sign in Qs. The

sequence counter SC is initially set to a number equal to the number of bits in the

multiplier. The counter is decremented by 1 after forming each partial product. When the

content of the counter reaches zero, the product is formed and the process stops.

Initially, the multiplicand is in register B and the multiplier in Q. The sum of A and B

forms a partial product which is transferred to the EA register. Both partial product and

multiplier are shifted to the right. This shift will be denoted by the statement shr EAQ to

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

105

designate the right shift depicted in Figure. The least significant bit of A is shifted into the

most significant position of Q, the bit from E Is shifted into the most significant position of

A, and 0 is shifted into E. After the shift, one bit of the partial product is shifted into Q,

pushing the multiplier bits one position to the right. In this manner, the rightmost flip-flop

in register Q, designated by Q„, will hold the bit of the multiplier, which must be inspected

next.

Hardware Algorithm

Figure shows a flowchart of the hardware multiply algorithm. Initially, the

multiplicand is in B and the multiplier in Q. Their corresponding signs are in Bs and Qs,

respectively. The signs are compared, and both A and Q are set to correspond to the sign of

the product since a double- length product will be stored in registers A and Q. Registers A

and E are cleared and the sequence counter SC is set to a number equal to the number of

bits of the multiplier. We are assuming here that operands are transferred to registers from

a memory unit that has words of n bits. Since an operand must be stored with its sign, one

bit of the word will be occupied by the sign and the magnitude will consist of n — 1bits.

After the initialization, the low-order bit of the multiplier in Qn is tested. If it is a 1, the

multiplicand in B isadded to the present partial product in A. If it is a 0, nothingis done.Register

EAQ is then shifted once totherightto formthe newpartialproduct. Thesequencecounter is

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

106

decremented by 1 and its new value checked. If it is not equal to zero, the process is repeated

anda new partial product is formed. The process stops when SC = 0. Note that the partial

product formed in A

isshiftedintoQonebitatatimeandeventuallyreplacesthemultiplier.Thefinalproductisavailableinbot

hA and Q, with A holdingthemost significantbits and Q holding the least significant bits. The

previousnumericalexampleisrepeatedin Table is shown to clarify the hardware multiplication

process. Theprocedurefollows the stepsoutlined in theflowchart.

BoothMultiplicationAlgorithm

Booth algorithm gives a procedure for multiplying binary integers in signed-2’s

complement representation.It operates on the fact that strings of 0's in the multiplier require no

addition but just shifting, and a string ofTs in the multiplier from bit weight 2* to weight 2 m

can betreatedas 2 k+1 — 2 m . For example, thebinary number 001110 (+14) has a string of 1’s

from2^k to2^m (k = 3, m = 1). The number can berepresented as 2k+1 - 2m = 16 - 2 = 14.

Therefore, the multiplicationMx14,

whereMisthemultiplicandand14themultiplier,canbedoneasMx24M x 21. Thus the product can be

obtained by shifting the binary multiplicandM fourtimes tothe left andsubtracting M shifted left

once. As in all multiplication schemes. Booth algorithm requires examination ofthe multiplier

bits and shifting of the partial product. Prior to theshifting, the multiplicand may be added

tothepartialproduct, subtractedfromthe partialproduct,orleftunchangedaccording

tothefollowingrules:

 Themultiplicandissubtractedfromthepartialproductuponencounteringthefirstleasts

ignificant 1inastringof1’s inthemultiplier.

 Themultiplicandisaddedtothepartialproductuponencounteringthefirst0(providedthatth

erewasaprevious 1)ina string of0's inthemultiplier.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

107

 Thepartialproductdoesnotchangewhenthemultiplierbitisidenticaltothepreviousmul

tiplierbit.

The algorithm works for positive or negative multipliers in 2'scomplement representation.

Thisis becausea negative multiplier ends with a string of 1’s and the last operation will be

asubtraction of the appropriateweight. For example,a multiplier equal to -14 is

representedin2's complement as 110010 and is treatedas-2^4 +2^2 –2^1=–14.

The hardware implementation of Booth algorithm requires the register configuration

shown in Figure. Werename registers A, B, and Q, as AC, BR,andQR, respectively. Qndesignates

theleast significant bit ofthe multiplier in register QR. An extra flip-flop Qn+1is appended to QR

to facilitate a double bit inspectionof the multiplier. The flowchart for Booth algorithm is

shown in Figure. AC and the appended bit Qn+1are initially cleared to 0 and the sequence

counter SC is set to a number n equal to the number of bits in themultiplier. The two bits ofthe

multiplier inQnand Qn+1are inspected. If the two bits are equal to 10, itmeans that the first 1 in

a string of l's has been encountered. This requires a subtraction ofthe multiplicandfrom

thepartialproductin AC. If the two bits are equal to 01, it means that the first 0 in a string of 0's

hasbeen encountered. This requires the addition of the multiplicand to the partial product in

AC.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

108

Whenthe twobits are equal, the partial product does not change.An overflow cannot

occurbecausethe addition andsubtraction of the multiplicand follow each other. As a

consequence, the two numbers that are added alwayshave opposite signs, a condition that

excludes an overflow. The next step is to shift right the partial productand the multiplier

(including bit Qn+1). This is an arithmetic shift right (ashr) operation which shifts ACandQR to

the right and leaves the signbit in AC unchanged. The sequence counter is decremented and

thecomputationalloop is repeated ntimes.

AnumericalexampleofBoothalgorithmisshowninTableforn=5.Itshowsthestep-by-

stepmultiplication of (-9) x (-13) = +117. Note that the multiplier in QR is negative and that the

multiplicand inBR is also negative. The 10-bit product appears in AC and QRandis positive.The

final value of Qn+1 istheoriginalsign bitofthe multiplierand should notbe taken aspartofthe

product.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

109

3.8. Division Algorithms:

Division of two fixed-point binary numbers in signed-magnitude representation is

done with paper andpencil by a process of successive compare, shift, and subtract

operations. Binary division is simplerthan decimal division because the quotient digits are

either 0 or 1 and there is no need to estimate howmany times the dividend or partial

remainder fits into the divisor. The division process is illustrated bya numerical example in

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

110

Figure. The divisor B consists of five bits and the dividend A, of ten bits. Thefive most

significant bits of the dividend are compared with the divisor. Since the 5-bit number

issmallerthanB,wetryagainbytakingthesixmostsignificantbitsofAand compare

thisnumberwithB.The6-

bitnumberisgreaterthanB,soweplacea1forthequotientbitinthesixthpositionabovethedividend

. The divisor is then shifted once to the right and subtracted from the dividend. The difference

iscalled a partial remainder because the division could have stopped here to obtain a

quotient of 1 and aremainder equal to the partial remainder. The process is continued by

comparing a partial remainderwith the divisor. If the partial remainder is greater than or

equal to the divisor, the quotient bit is equalto 1. The divisor is then shifted right and

subtracted from the partial remainder. If the partial remainderis smaller than the divisor,

the quotient bit is 0 and no subtraction is needed. The divisor is shifted oncetotheright

inany case.Notethat theresult gives botha quotient andaremainder.

HardwareImplementation forSigned-MagnitudeData

When the division is implemented in a digital computer, it is convenient to change the

process slightly.Instead of shifting the divisorto the right, the dividend, or partial remainder, is

shiftedto the left,

thusleavingthetwonumbersintherequiredrelativeposition.SubtractionmaybeachievedbyaddingAt

othe2's complement of B. The informationabouttherelativemagnitudes is then available from the

end-carry.The hardware for implementing the division operation is identical to that required

formultiplication andconsists of thecomponents shown in Figure. Register EAQ is now shifted

to the left with 0 inserted intoQn and the previous valueof E lost.

The numerical example is repeated in Figure to clarify the proposeddivision process.The

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

111

divisor is stored in the B register andthedouble-length dividendisstoredinregisters A and Q. The

dividend is shifted to the left and the divisor is subtracted by adding its

2'scomplementvalue.TheinformationabouttherelativemagnitudeisavailableinE.IfE=1,itsignifiest

hatAis greaterthanorequaltoB.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

112

A quotient bit 1 is inserted into Qn and the partial remainder is shifted to the left to

repeat the process. If E =0, it signifies that A < B so the quotient in Qn remains a 0 (inserted

during the shift). The value of B is thenadded to restore the partial remainder in A toits

previousvalue.The partial remainder is shifted to the leftand the process is repeated

againuntilallfivequotient bits are formed. Note that while the partialremainder is shifted left,the

quotient bitsare shifted also and after five shifts, the quotient is in Q and

thefinalremainderisinA.

Before showing the algorithm in flowchart form, we have to consider the sign of the result

andpossibleoverflowcondition.Thesignofthequotientisdeterminedfromthesignsofthedividendan

dthedivisor.If the two signs are alike, the sign of the quotient is plus. If they are unalike, the sign

is minus. The sign of the remainder is the same as the sign of the dividend.

DivideOverflow

The division operation may result in a quotient with an overflow. This is not a

problem when workingwith paper and pencil but is critical when the operation is

implemented with hardware. This is becausethe length of registers is finite and will not hold

a number that exceeds the standard length. To see this,consider a system that has 5-bit

registers. We use one register to hold the divisor and two registers tohold the dividend.

From the example of Figure we note that the quotient will consist of six bits if thefive most

significant bits of the dividend constitute a number greater than the divisor. The quotient is

tobe stored in a standard 5-bit register, so the overflow bit will require one more flip-flop

for storing thesixth bit. This divide- overflow condition must be avoided in normal

computer operations because

theentirequotientwillbetoolongfortransferintoamemoryunitthathaswordsofstandardlength,t

hatis, the same as the length of registers. Provisions to ensure that this condition is detected

must beincludedineitherthehardwareorthe software ofthe computer,or

inacombinationofthetwo.

Whenthedividendistwiceaslongasthedivisor,theconditionforoverflowcanbestatedasfol

lows:A divide-overflow condition occurs if the high-order half bits of the dividend

constitute a numbergreater than or equal to the divisor. Another problem associated with

division is the fact that a divisionby zero must be avoided. The divide-overflow condition

takes care of this condition as well. Thisoccurs because any dividend will be greater than or

equal to a divisor which is equal to zero. Overflowcondition is usually detected when a

special flip-flop is set. We will call it a divide-overflow flip-flopandlabelitDVF.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

113

HardwareAlgorithm

The hardware divide algorithm is shown in the flowchart of Figure. The dividend is in A

and Qand thedivisor in B. The sign of the result is transferred into Qs to be part of the quotient.

A constant is set into thesequence counter SC to specify the number of bits in the quotient. As in

multiplication, we assume thatoperands are transferred to registers fromamemory unit that

has words of n bits. Since an operand mustbe stored with its sign, one bit of the word will be

occupied by the sign and the magnitude will consist of n -1bits.

A divide-overflow condition is tested by subtracting the divisor in B from half of the

bits of thedividend stored in A. If A is greater than or equal to B, the divide-overflow flip-

flop DVF is set and theoperation is terminated prematurely. If A < B, no divide overflow

occurs so the value of the dividend isrestored by adding B to A. The division of the

magnitudes starts by shifting the dividend in AQ to theleft with the high-order bit shifted

into E. If the bit shifted into E is 1, we know that EA > B becauseEA consists of a 1 followed

by n-l bits while B consists of only n-1 bits. In this case, B must besubtracted from EA and 1

inserted into Qn for the quotient bit. Since register Aismissing the high-orderbit of the dividend

(which is in E), its value is EA – 2n-1. Adding to this value the 2's complement of

Bresultsin(EA–2n-1)+(2n-1-B)=EA-BThecarryfrom thisadditionisnottransferred

toEifwewantEtoremaina1.

If the shift-left operation inserts a 0 into E, the divisor is subtracted by adding

its2'scomplement valueand the carry is transferred into E. If E = 1, it signifies that A greater

than or equal to B; therefore, Qn is setto 1. If E = 0, it signifies that A < B and the original

number is restored by adding B to A. In the latter

caseweleavea0inQn(0wasinsertedduringtheshift).

This process is repeated again with register A holding the partial remainder. After n-l

times, the quotientmagnitude is formed in register Q and the remainder is found in

registerA.Thequotient sign is in Qs andthesign ofthe remainderinAs is the same

astheoriginalsign ofthe dividend.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

114

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

115

3.9. Floating-PointArithmeticOperations:

Manyhigh-levelprogramminglanguageshaveafacilityforspecifyingfloating-

pointnumbers.Anycomputer that has a compiler for such high-level programming language

must have a provision for handlingfloating-point arithmetic operations. The operations are

quite often included in the internal hardware. If nohardware is available for the operations, the

compiler must be designed with a packageoffloating-pointsoftwaresubroutines.Althoughthe

hardware method is more expensive, it is so much more efficient thanthe software method that

floating-pointhardwareisincludedin4nost computersandisomittedonlyinverysmallones.

A floating-point number in computer registers consists of two parts: a mantissa m and an

exponent e.

Thetwopartsrepresentanumberobtainedfrommultiplyingmtimesaradixrraisedtothevalueofe;thus

mx re.The mantissamay bea fraction oran integer. The location of the radix point and the value

of

theradixrareassumedandarenotincludedintheregisters.Forexample,assumeafractionrepresentati

onanda radix 10. The decimal number 537.25 is represented in a register with m = 53725 and e

= 3 and isinterpreted to represent the floating- point number 0.53725 x 10^3. A floating-point

number is normalized

ifthemostsignificantdigitofthemantissaisnonzero.Inthiswaythemantissacontainsthemaximumpo

ssible number of significant digits. A zero cannot be normalized because it does not have a

nonzero digit.Itis represented in floating-pointbyall0's in the mantissa andexponent.

Arithmetic operations with floating-point numbers are more complicated than with fixed-

point numbers andtheir execution takes longer and requires more complex hardware. Adding or

subtracting two numbersrequires first an alignment of the radix point since the exponent parts

must be made equal before adding orsubtracting the mantissas. The alignment is donebyshifting

one mantissa while its exponent is adjusteduntilitis equaltothe

otherexponent.Considerthesumofthe following floating-pointnumbers:

It is necessary that the two exponents be equal before the mantissas can be added. We

can either shift thefirst number three positions to the left, or shift the second number three

positions to the right. When themantissas are stored in registers, shifting to the left causes a loss

of most significant digits. Shifting to theright causes a loss of least significant digits. The second

methodis preferable because it only reduces theaccuracy, while the firstmethodmay cause

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

116

anerror.The usual alignment procedure is to shift themantissa that has the smaller exponent to

the right by a number of places equal to the difference between theexponents.Afterthis is done,

the mantissascan beadded:

When two normalized mantissas are added, the summaycontainanoverflowdigit.An

overflow can becorrected easily by shifting the sum once to the right and incrementing the

exponent. When two numbers aresubtracted,the resultmay containmostsignificantzerosas

shownin thefollowingexample:

A floating-point number that has a 0 in the most significant position of the mantissa is

said to have anunderflow. To normalize a number that containsan underflow,it is necessary to

shiftthe mantissa to theleft and decrement the exponent until a nonzero digit appears in the first

position. In the example above, it isnecessary to shift left twice to obtain .35000 x 10 3 . In most

computers, a normalization procedure isperformedaftereachoperation to ensurethatallresults

are in a normalizedform.

Floating-point multiplication and division do not require an alignment of the mantissas.

The product can beformed by multiplying the two mantissas and adding the exponents. Division

is accomplished by dividingthe mantissas and subtracting the exponents.Theoperations

performed with the mantissas are the same asin fixed-point numbers, so the two can share the

same registers and circuits. The operations performed withthe exponents are compare and

increment (for aligning the mantissas), add and subtract (for multiplicationand division), and

decrement (to normalize the result). The exponent may be represented in any one of

thethreerepresentations:signed-magnitude, signed-2,s complement,orsigned-l'scomplement.

A fourth representation employed in many computers is known as a biased exponent. In

this representation,the sign bit is removed from being a separate entity. The bias

isapositivenumber that is added to eachexponent as the floating-point numberisformed,sothat

internally all exponents are positive. Thefollowing example may clarify this type of

representation.

Consider an exponent that ranges from -50 to 49.Internally, it is represented by two

digits (without a sign) by adding to it a bias of 50. The exponentregistercontainsthe number e +

50, where e is the actual exponent. This way, the exponents are represented inregisters as

positive numbers in the range of 00 to 99. Positive exponents in registers have the range

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

117

ofnumbers from 99 to 50. The subtraction of 50 gives the positive values from 49 to 0. Negative

exponents arerepresented in registers in the range from 49 to 00. The subtraction of 50 gives

the negative values in therange of -1 to -50. The advantage ofbiased exponents is that they

contain only positive numbers. It

isthensimplertocomparetheirrelativemagnitudewithoutbeingconcernedwiththeirsigns.Asaconse

quence,amagnitudecomparatorcanbeusedtocomparetheirrelativemagnitudeduringthealignment

of the mantissa.Another advantage is that the smallest possible biasedexponent contains

allzeros.Thefloating-

pointrepresentationofzeroisthenazeromantissaandthesmallestpossibleexponent.

RegisterConfiguration

The register configuration for floating-point operations is quite similar to the layout

for fixed- pointoperations. As a general rule, the same registers and adder used for fixed-

point arithmetic are used forprocessing the mantissas. The difference lies in the way the

exponents are handled.Theregisterorganization for floating-point operations is shown in

Figure. There are three registers, BR, AC,

andQR.Eachregisterissubdividedintotwoparts.Themantissaparthasthesameuppercaseletters

ymbolsas in fixed-point representation. The exponent part uses the corresponding lower-

case letter symbol. Itis assumed that each floating-point number has a mantissa in signed-

magnitude representation and abiased exponent. Thus the AC has a mantissa whose sign is

in A s and a magnitude that is in A. Theexponent is in the part of the register denoted by the

lowercase letter symbol a. The diagram showsexplicitly the most significant bit of A, labeled

by A1. The bit in this position must be a 1 for

thenumbertobenormalized.NotethatthesymbolACrepresentstheentireregister,thatis,theconc

atenation of As, A1, and a. Similarly, register BR is subdivided into Bs, B, and b, and QR

into Qs,Q,andq.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

118

A parallel-adder adds the two mantissas and transfers the sum into A and the carry into

E. A separateparallel-adder is used for the exponents. Since the exponents are biased, they do

nothave a distinct sign bitbut are represented as a biased positive quantity. It is assumed that

the floating-point numbers are so largethat the chance of an exponent overflow is very remote,

and for this reason the exponent overflow will

beneglected.Theexponentsarealsoconnectedtoamagnitudecomparatorthatprovidesthreebinaryo

utputsto indicate their relative magnitude. The number in the mantissa willbe taken as a

fraction, so the binarypoint isassumed to resideto the left of the magnitude part. Integer

representation for floating-point causescertain scaling problems during multiplication and

division. To avoid these problems, we adopt a fractionrepresentation. The numbers in the

registers are assumed to be initially normalized. After each arithmeticoperation, the result will

be normalized. Thus allfloating-pointoperandscoming from and going to thememoryunitare

alwaysnormalized.

AdditionandSubtraction:

Duringadditionorsubtraction,thetwofloating-

pointoperandsareinACandBR.Thesumordifferenceisformedin theAC.Thealgorithmcan be

divided into fourconsecutive parts:

 Checkforzeros.

 Alignthemantissas.

 Addorsubtractthemantissas.

 Normalizetheresult.

Afloating-

pointnumberthatiszerocannotbenormalized.Ifthisnumberisusedduringthecomputation,the

result may also be zero. Instead of checkingforzerosduringthenormalization process we check

forzeros at the beginning and terminate theprocessifnecessary. The alignment of the mantissas

must

becarriedoutpriortotheiroperation.Afterthemantissasareaddedorsubtracted,theresultmaybeunn

ormalized.Thenormalization procedure ensures that the result is normalized prior to its transfer

tomemory.

The flowchart for addingorsubtracting two floating-point binary numbers is shown in

Figure.If BR isequal to zero, theoperation isterminated, with the value in the AC being the

result. If AC is equal

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

119

tozero,wetransferthecontentofBRintoACandalsocomplementitssignifthenumbersaretobesubtrac

ted.Ifneithernumberis equalto zero,weproceedto align the mantissas.

The magnitude comparator attached to exponents a and b provides three outputs that

indicate their relativemagnitude. If the two exponents are equal, we go to perform the arithmetic

operation. If the exponents

arenotequal,themantissahavingthesmallerexponentisshiftedtotherightanditsexponentincrement

ed.Thisprocess is repeated untilthe two exponents are equal.

The addition and subtraction of the two mantissas is identical to the fixed-point addition

and subtractionalgorithm. The magnitude part is added or subtracted depending on the

operationand the signs of the twomantissas. If an overflow occurs when the magnitudes are

added, it is transferred into flip-flop E. If E isequal to 1, the bit is transferred into A1 and all

other bits of A are shifted right. The exponent must beincremented to maintain the correct

number. No underflow may occur in this case because the originalmantissa that was not shifted

during the alignment was already in a normalized position. If the magnitudeswere subtracted,

the resultmay be zero or may have an underflow. If the mantissa is zero,the entirefloating-point

numberin the AC is made zero. Otherwise, the mantissa must have at least one bit that isequal to

1. The mantissa has an underflow if the most significant bit in position A1 is 0. In that

case,themantissa is shifted left and the exponent decremented. The bit in A1 is checked again

and the process isrepeateduntilitisequalto 1.WhenA1=1,the mantissa isnormalized and

theoperationiscompleted.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

120

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

121

Multiplication

The multiplication of two floating-point numbers requires that we multiplythe mantissas

andadd theexponents. No comparison of exponents or alignment of mantissas is necessary. The

multiplication of themantissas is performed in the same way as in fixed-point to provide a

double-precision product. The double-precision answer is used in fixed-point

numberstoincrease the accuracy of the product. In floating-point,the range of a single-precision

mantissa combined with the exponent is usually accurate enough so that onlysingle-

precisionnumbersare maintained. Thusthe half most significant bits of the mantissa product

andtheexponentwillbe taken togetherto forma single-precisionfloating-pointproduct.

Themultiplicationalgorithmcanbesubdividedintofourparts:

 Checkforzeros.

 Addtheexponents.

 Multiplythemantissas.

 Normalizetheproduct.

Steps 2 and 3 can be done simultaneously if separate adders are available for the

mantissas and exponents.The flowchart for floating-point multiplication

isshowninFigure.Thetwo operands are checked todetermine if they contain a zero. If either

operand is equal to zero, the product in the AC is set to zero andthe operation is terminated.

Ifneitherof the operands is equal to zero, the process continues with theexponentaddition.

Theexponentof the multiplier is in q and the adder is between exponents a and b. It isnecessary

totransfertheexponentsfrom q to a, add the two exponents, and transfer the sum into a.

Sinceboth exponents are biased by the addition of a constant, the exponent sum will have double

this bias. Thecorrect biased exponent for the product is obtained by subtracting the bias number

from the sum. Themultiplication of the mantissas is done as in the fixed-point case with the

product residing in A and

Q.Overflowcannotoccurduringmultiplication,sothereisnoneedtocheckforit.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

122

The product may have an underflow, so the most significant bit in A is checked. If it

is a 1, the

productisalreadynormalized.Ifitisa0,themantissainAQisshiftedleftandtheexponentde

cremented.Note that only one normalization shift is necessary. The multiplier and

multiplicand were originallynormalized and contained fractions. The smallest normalized

operand is 0.1, so the smallest possibleproduct is 0.01. Therefore, only one leading zero may

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

123

occur. Although the low-order half of themantissa is in Q, we do not use it for the floating-

point product. Only the value in the AC is taken astheproduct.

Division

Floating-point division requires that the exponents be

subtractedandthemantissasdivided. The mantissadivisionisdoneasinfixed-

pointexceptthatthedividendhasasingle-precisionmantissathatisplacedinthe AC. Remember that

the mantissa dividend is a fraction and not an integer. For integer representation, asingle-

precision dividend must be placed in register Q and register A must be cleared. The zeros in A

are totheleftofthebinarypointandhavenosignificance.Infractionrepresentation,asingle-

precisiondividendis placed in register A and register Q is cleared. The zeros in Q are to the right

of the binary point and haveno significance. The check for divide-overflow is the same as in

fixed-point representation. However, withfloating-point numbers the divide-overflow imposes

no problems. Ifthedividendisgreaterthan or equalto the divisor, the dividend fraction is shifted

to the right and its exponent incremented by 1. For normalizedoperands this is a sufficient

operation to ensure that no mantissa divide-overflow will occur. The operationabove

isreferredtoasadividendalignment. The division of two normalized floating-point numbers

willalways result in a normalized quotient provided that a dividend alignment is carried out

before the

division.Therefore,unliketheotheroperations,thequotientobtainedafterthedivisiondoesnotrequir

eanormalization.

Thedivisionalgorithmcanbesubdividedintofiveparts:

 Checkforzeros.

 Initializeregistersandevaluatethesign.

 Alignthedividend.

 Subtracttheexponents.

 Dividethe mantissas.

The flowchart for floating-point division is shown in Figure. The two operands are

checked for zero. If thedivisor is zero, it indicates an attempt to divide

byzero,whichisanillegaloperation. The operation isterminated with an errormessage. An

alternativeprocedure wouldbe to set the quotient in QR to the mostpositive number possible (if

the dividendis positive) orto the most negative possible (if the dividend

isnegative).IfthedividendinACiszero,thequotientinQRismadezero andtheoperationterminates.

Iftheoperandsarenotzero,weproceedtodeterminethesignofthequotientandstoreitinQs.

The signof the dividend in As is left unchanged to be the sign of the remainder. The Q register is

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

124

cleared and thesequence counter SC is set to a number equal to the number of bits in the

quotient. The dividendalignment is similar to the divide-overflow check in the fixed-point

operation. The proper alignmentrequires that the fraction dividend be smaller than the

divisor. The two fractions are compared by asubtraction test. The carry in E determines

their relative magnitude. The dividend fraction is restored toits original value by adding the

divisor. If A is greater than or equal to B, it is necessary to shift A onceto the right and

increment the dividend exponent. Since both operands are normalized, this

alignmentensures that A < B. Next, the divisor exponent is subtracted from the dividend

exponent. Since bothexponents were originally biased, the subtraction operation gives the

difference without the bias. Thebiasisthen addedand the resulttransferred intoqbecause

thequotientisformedin QR.Themagnitudes of the mantissas are divided as in the fixed-point

case. After the operation, the mantissaquotient resides in Q and the remainder in A. The

floating-point quotient is already normalized andresidesinQR.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

125

The exponent of the remainder should be the same as the exponent of the dividend. The

binary point for theremainder mantissa lies (n—1) positions to the left of A1. The remainder can

be converted to a normalizedfractionbysubtractingn-

1fromthedividendexponentandbyshiftanddecrementuntilthebitinA1isequalto1.Thisis

notshownin the flowchart.

3.10. DecimalArithmeticOperations:

Thealgorithmsforarithmeticoperationswithdecimaldataaresimilartothealgorithmsforthec

orresponding operations with binary data. In fact, except for a slight modification in the

multiplication anddivision algorithms, the same flowcharts can be used for both types of data

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

126

provided that we interpret themicro-operation symbols properly. Decimal numbers in BCD are

stored in computer registers in groups offour bits. Each 4-bit group represents a decimal

digitand must be taken as a unit when performing decimalmicro-operations.Forconvenience,

wewill use the same symbols for binary and decimal arithmeticmicro-operations but give them a

different interpretation. As shown in Table, a bar over the register lettersymbol denotes the 9's

complement of the decimal number stored in the register. Adding 1 to the

9'scomplementproducesthe 10'scomplement.

Thus, for decimal numbers, the symbol A <- A+B’+1 denotes a transfer of thedecimal

sum formed byadding the original content A to the 10's complement of B. The use

ofidenticalsymbols for the 9'scomplementandthel'scomplementmay beconfusingifboth

typesofdataareemployedin thesamesystem

Incrementing or decrementing a register is the same for binary and decimal except for

thenumber of statesthat the register is allowed to have. A binary counter goes through 16

states,from 0000 to 1111, whenincremented. A decimal counter goes through 10 states from

0000 to 1001 and back to 0000, since 9 is the lastcount. Similarly, a binary counter sequences

from 1111to 0000 when decremented. A decimal counter goesfrom 1001 to 0000. A decimal shift

right or left is preceded by the letter d to indicate a shift over the fourbitsthathold the decimal

digits.As a numerical illustration consider a register A holding decimal 7860 in BCD.The bit

pattern of the 12 flip-flops is 0111 1000 0110 0000. The micro-operation dshr A shifts the

decimalnumber one digit to the right to give 0786. This shift is over the four bits and changes

the content of theregisterinto 0000 0111 10000110.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

127

AdditionandSubtraction

The algorithm for addition and subtraction of binary signed-magnitude numbers

applies also to decimalsigned-magnitudenumbersprovidedthat we interpret themicro-

operationsymbols inthe propermanner. Similarly, the algorithm for binary signed-2's

complement numbers applies to decimal signed-10's complement numbers. The binary

data must employ a binary adder and a complementer. Thedecimal data must employ a

decimal arithmetic unit capable of adding two BCD numbers and formingthe 9's

complement of the subtrahend. Decimal data can be added in three different ways, as

shown inFigure. The parallel method uses a decimal arithmetic unit composed of as many

BCD adders as therearedigitsinthenumber.Thesumisformedin parallelandrequiresonly

onemicro-operation.

In the digit-serial bit-parallel method, the digits are applied

toasingleBCDadderserially, while the bitsof each coded digit are transferred in parallel. The sum

is formed by shifting the decimal numbers throughthe BCD adder one at a time. For k decimal

digits, this configuration requires k micro-operations, one foreach decimal shift. In the all serial

adder,thebitsare shifted one at a time through a full-adder. The binarysum formed after four

shifts must be corrected into a valid BCD digit. If the binary sum is greater than orequalto 1010,

the binarysum is corrected by adding to it 0110 and generating a carry for the next pair ofdigits.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

128

The parallel method is fast but requires a large number of adders. The digit-serial bit-

parallel methodrequires only one BCD adder, which is shared by all the digits. It is slower than

the parallel method

becauseofthetimerequiredtoshiftthedigits.Theallserialmethodrequiresaminimumamountofequip

mentbutisveryslow.

Multiplication

Themultiplicationoffixed-pointdecimalnumbersis similartobinaryexcept fortheway

thepartialproducts are formed. A decimal multiplier has digits that range in value from 0 to 9,

whereas a binarymultiplier has only 0 and 1 digits. In thebinarycase,themultiplicand is added

to the partial product ifthe multiplier bit is1. In the decimal case, the multiplicandmust be

multiplied by the digit multiplier andthe result added to the partial product. This operationcan

be accomplishedby adding the multiplicand tothe partial product anumber of times equalto the

value of the multiplier digit. The registers organizationfor the decimal multiplication is shown in

Figure. We are assuming here four-digit numbers, with each digitoccupying four bits, for a total

of 16 bits for each number. There are three registers, A, B, and Q, eachhavinga corresponding

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

129

signflip-flop As, Bs, andQs.

Registers A and B have four more bits designated by Ae and Be that provide an

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

130

extension of one more digitto the registers. The BCD arithmetic unitadds the five digits in

parallelandplacesthe sum in the five-digit A register.The end-carrygoesto flip-flop E. The

purpose of digit Ae is to accommodate anoverflow while adding the multiplicand to the partial

product during multiplication. The purpose of digit Beis to form the 9's complement of the

divisor when subtracted from the partial remainder during the divisionoperation.The

leastsignificant digitin register Q is denoted by QL. This digit can be incremented

ordecremented.

Adecimaloperandcomingfrommemoryconsistsof17bits.Onebit(thesign)istransferred

to Bs and the magnitude of the operand is placed in the lower 16 bits of B. Both Be and Ae

arecleared initially. The result of the operation is also 17 bits long and does not use theAe part of

the Aregister. The decimal multiplication algorithm is shown in Figure. Initially, the entire A

register and Be arecleared and the sequence counter SC is set to a number k equal to the number

of digits in the multiplier. Thelow-order digit of the multiplier in QL is checked. If it is not equal

to 0, the multiplicand in B is added to thepartial product in A once and QL

isdecremented.QLischecked again and the process is repeated until itis equal to 0. In this way,

the multiplicand in B is added to the partial product a number of times equal

tothemultiplierdigit.AnytemporaryoverflowdigitwillresideinAeandcanrangeinvaluefrom0to9.Ne

xt, the partial product and the multiplier are shifted once to the right. This places zero in Ae and

transfersthenext multiplier quotient into QL. The process is then repeated k times to form a

double-lengthproductinAQ.

Division

Decimaldivisionissimilartobinarydivisionexceptofcoursethatthequotientdigitsmayhav

eanyofthe10 values from 0 to 9. In the restoring division method, the divisor is subtracted from

the dividend or partialremainder as many times asnecessaryuntilanegativeremainder results.

The correct remainder is thenrestored by adding the divisor. The digit in the quotient reflects

the number of subtractions up to butexcluding the one that caused the negative difference. The

decimal division algorithm is shown in Figure. Itis similar to the algorithm with binary data

except forthe way the quotientbits are formed. The dividend(orpartial remainder) is shifted to

the left, with its most significant digitplacedin Ae.The divisoris thensubtractedby adding its 10's

complement value. Since Be is initially cleared, its complement value is 9 asrequired. The carry

in E determines the relative magnitude of A and B.If E =0,itsignifies that A < B. Inthis case the

divisor is added to restore the partial remainder and Q l stays at0(inserted there during

theshift). If E = 1, it signifies that A greater than or equal to B.

Thequotient digit in QL is incremented onceandthedivisor

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

131

subtractedagain.Thisprocessisrepeateduntilthesubtractionresultsinanegativedifference which is

recognized by E being 0. When this occurs, the quotient digit is not incremented but thedivisor

is added to restore the positive remainder. In this way, the quotient digit is made equal to the

numberof times that the partial remainder "goes" into the divisor. The partial remainder and

the quotient bits areshifted once to the left and the process is repeated k times to form k

quotient digits. The remainder

isthenfoundinregisterAandthequotientisinregisterQ.ThevalueofEisneglected.

UNIT – 04 – Part - A

INPUT-OUTPUTORGANIZATION

The Input / output organization of computer depends upon the size of computer and

theperipheralsconnectedtoit.The I/OSubsystemofthecomputer,provides

anefficientmodeofcommunication betweenthecentral system and the outsideenvironment

Themostcommoninput outputdevicesare:

 Monitor

 Keyboard

 Mouse

 Printer

 Magnetictapes

The devices that are under the direct control of the computer are said to be

connectedonline.

4.1. Input-Output Interface:

InputOutput

InterfaceprovidesamethodfortransferringinformationbetweeninternalstorageandexternalI/Od

evices.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

132

Peripherals connected to a computer need special communication links for interfacing

themwiththecentral processingunit.

The purpose of communication link is to resolve the differences that exist between

thecentralcomputer and each peripheral.

TheMajorDifferencesare:-

 Peripherals are electro-mechanicaland electromagnetic devices and CPU andmemory

are electronic devices. Therefore, a conversion of signal values may beneeded.

 The data transfer rate of peripherals is usually slower than the transfer rate of

CPUandconsequently, asynchronization mechanism maybeneeded.

 Data codes and formats in the peripherals differ from the word format in the CPU

andmemory.

 The operating modes of peripherals are different from each other and must

becontrolled so as not to disturb the operation of other peripherals connected to

theCPU.

To Resolve these differences, computer systems include special hardware

componentsbetweentheCPUandPeripheralsto

supervisesandsynchronizesallinputandouttransfers

 These components are called Interface Units because they interface between

theprocessorbusand the peripheral devices.

I/OBUSand InterfaceModule:

Itdefinesthetypicallinkbetweentheprocessorandseveralperipherals.

The I/O Bus consists of data lines, address lines and control

lines.TheI/Obusfromtheprocessorisattachedtoallperipheralsinterface.

To communicate with a particular device, the processor places a device address on

addresslines.

Each Interface decodes the address and control received from the I/O bus, interprets

them forperipheralsand providessignals fortheperipheralcontroller.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

133

Itisalsosynchronizesthedataflowandsupervisesthetransfer

betweenperipheralandprocessor.

Eachperipheralhasitsowncontroller.

For example, the printer controllercontrols the paper motion, the print

timingThecontrollinesarereferredasI/Ocommand.Thecommandsareasfollowing:

Control command- A control command is issued to activate the peripheral and to inform

itwhatto do.

Status command- A status command is used to test various status conditions in the

interfaceandthe peripheral.

Data Output command- A data output command causes the interface to respond

bytransferringdata from the bus into oneofits registers.

Data Input command-Thedata input commandis the oppositeof thedataoutput.

In this case the interface receives on item of data from the peripheral and places it in

itsbuffer register.I/O Versus MemoryBus

To communicate with I/O, the processor must communicate with the memory unit.

Like theI/O bus, the memory bus contains data, address and read/write control lines. There

are 3 waysthatcomputer buses canbeusedto communicatewithmemoryandI/O:

 Usetwo Separatebuses , oneformemoryand otherfor I/O.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

134

 Useonecommon busforbothmemoryandI/Obut separate controllines foreach.

 Use one common bus for memory and I/O with common control lines.I/OProcessor

In the first method, the computer has independent sets of data, address and control

busesone for accessing memory and other for I/O. This is done in computers that provides

aseparate I/O processor (IOP). The purpose of IOP is to provide an independent pathway

forthetransfer ofinformation betweenexternal deviceand internal memory.

4.2. AsynchronousDataTransfer:

This Scheme is used when speed of I/O devices do not match with microprocessor,

andtiming characteristics of I/O devices is not predictable. In this method, process initiates

thedevice and check its status. As a result, CPU has to wait till I/O device is ready to

transferdata.WhendeviceisreadyCPUissuesinstructionfor

I/Otransfer.Inthismethodtwotypesoftechniques areusedbased on signals beforedatatransfer.

 StrobeControl

 Handshaking

StrobeSignal :

The strobe control method of Asynchronous data transfer employs a single control line

totime eachtransfer. Thestrobemaybeactivated byeither thesourceor thedestination unit.

DataTransferInitiatedbySourceUnit:

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

135

In the block diagram fig. (a), the data bus carries the binary information from source

todestination unit. Typically, the bus has multiple lines to transfer an entire byte or word.

Thestrobeis asingle line thatinforms thedestination unit whenavaliddata word isavailable.

The timing diagram fig. (b) the source unit first places the data on the databus. The

information on the data bus and strobe signal remain in the active state to allow

thedestinationunit to receive thedata.

DataTransferInitiatedbyDestinationUnit:

In this method, the destination unit activates the strobe pulse, to informing the source

toprovide the data. The source will respond by placing the requested binary information on

thedata bus.

The data must be valid and remain in the bus long enough for the destinationunit to

accept it. When accepted the destination unit then disables the strobe and the

sourceunitremoves thedata from thebus.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

136

DisadvantageofStrobeSignal

The disadvantage of the strobe method is that, the source unit initiates the transfer has

no wayof knowing whether the destination unit has actually received the data item that was

places inthe bus. Similarly, a destination unit that initiates the transfer has no way of knowing

whetherthe source unit has actually placed the data on bus. The Handshaking method solves

thisproblem.

Handshaking:

The handshaking method solves the problem of strobe method by introducing a

secondcontrolsignal that provides a replyto theunit thatinitiatesthetransfer.

PrincipleofHandshaking:

Thebasicprinciple of the two-wirehandshakingmethod ofdata transfer isas follow:

One control line is in the same direction as the data flows in the bus from the source

todestination. It is used by source unit to inform the destination unit whether there a valid

datainthebus. Theothercontrollineis intheother directionfrom thedestinationto thesource.Itis

used by the destination unit to inform the source whether it can accept the data.

Thesequenceof controlduringthe transferdepends ontheunit thatinitiates the transfer.

SourceInitiatedTransferusingHandshaking:

The sequence of events shows four possible states that the system can be at any given

time.The source unit initiates the transfer by placing the data on the bus and enabling its data

validsignal. The data accepted signal is activated by the destination unit after it accepts the

datafrom the bus. The source unit then disables its data accepted signal and the system goes

intoitsinitial state.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

137

Destination InitiatedTransferUsingHandshaking:

The name of the signal generated by the destination unit has been changed to ready for

datato reflects its new meaning. The source unit in this case does not place data on the bus

untilafter it receives the ready for data signal from the destination unit. From there on,

thehandshakingprocedure follows the samepattern as in thesourceinitiated case.

The only difference between the Source Initiated and the Destination Initiated transfer

is intheirchoiceofInitial sate.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

138

AdvantageoftheHandshakingmethod:

 The Handshaking scheme provides degree of flexibility and reliability because

thesuccessfulcompletionof datatransfer reliesonactiveparticipation bybothunits.

 If any of one unit is faulty, the data transfer will not be completed. Such an error canbe

detected by means of a Timeout mechanism which provides an alarm if the data

isnotcompleted within time.

4.3. ModesofData Transfer:

Transfer of data is required between CPU and peripherals or memory or sometimes

betweenany two devices or units of your computersystem. To transfer a data from one unit

toanother one should be sure that both units have proper connection and at the time of

datatransfer the receiving unit is not busy. This data transfer with the computer is

InternalOperation.

All the internal operations in a digital system are synchronized by means of clock

pulsessuppliedbyacommonclock pulseGenerator. Thedata transfer can be

 Synchronous

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

139

 Asynchronous

When both the transmitting and receiving units use same clock pulse then such a data

transferiscalled Synchronousprocess. Ontheotherhand,ifthethereis notconcept

ofclockpulsesand the sender operates at different moment than the receiver then such a data

transfer iscalledAsynchronous datatransfer.

The data transfer can be handled by various modes. some of the modes use CPU as

anintermediate path, others transfer the data directly to and from the memory unit and this

canbehandled by3 followingways:

 ProgrammedI/O

 Interrupt-InitiatedI/O

 DirectMemoryAccess (DMA)

4.3.1. ProgrammedI/OMode:

InthismodeofdatatransfertheoperationsaretheresultsinI/Oinstructionswhichisapart of

computer program. Each data transfer is initiated by a instruction in the

program.Normallythe transfer isfrom aCPU registerto peripheral deviceorvice-versa.

Once the data is initiated the CPU starts monitoring the interface to see when next

transfercan made. The instructions of the program keep close tabs on everything that takes

place intheinterfaceunit and theI/O devices.

 Thetransferofdata requiresthreeinstructions:

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

140

Inthistechnique

CPUisresponsibleforexecutingdatafromthememoryforoutputandstoringdata in

memoryforexecutingof ProgrammedI/O asshown inFlowchart-:

DrawbackoftheProgrammed I/O:

The main drawback of the Program Initiated I/O was that the CPU has to monitor the

units allthe times when the program is executing. Thus the CPU stays in a program loop until

the I/Ounit indicates that it is ready for data transfer. This is a time consuming process and

the CPUtimeis wasted alot in keeping aneyeto theexecutingof program.

ToremovethisproblemanInterrupt facilityand specialcommandsareused.

4.3.2. Interrupt-InitiatedI/O:

In this method an interrupt facility an interrupt command is used to inform thedevice

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

141

aboutthe start and end of transfer. In the meantime the CPU executes other program. When

theinterface determines that the device is ready for data transfer it generates an Interrupt

Requestandsends it to the computer.

WhentheCPUreceivessuchan signal,ittemporarilystops theexecutionoftheprogram

andbranches to a service program to process the I/O transfer and after completing it returns

backtotask, what it was originallyperforming.

 InthistypeofIO,computerdoesnotchecktheflag.Itcontinuetoperformitstask.

 Wheneveranydevicewants theattention,it sends theinterrupt signal tothe CPU.

 CPU then deviates from what it was doing, store the return address from PC

andbranchto theaddress of thesubroutine.

 Therearetwoways of choosingthebranch address:

 VectoredInterrupt

 Non-vectoredInterrupt

 InvectoredinterruptthesourcethatinterrupttheCPUprovidesthebranchinformation.T

his

information iscalled interrupt vectored.

 In non-vectored interrupt, the branch address is assigned to the fixed address in

thememory.

PriorityInterrupt:

 TherearenumberofIOdevicesattachedtothecomputer.

 Theyareall capable of generatingthe interrupt.

 Whentheinterruptis generated frommorethan onedevice,priorityinterrupt

systemisused to determinewhich deviceis to beservicedfirst.

 Deviceswithhighspeed transferaregivenhigher priorityandslowdevices

aregivenlowerpriority.

 Establishingthe prioritycan bedonein twoways:

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

142

 UsingSoftware

 UsingHardware

 A poolingprocedureis used to identifyhighest priorityin softwaremeans.

PollingProcedure:

 Thereisone commonbranchaddressforallinterrupts.

 Branch address contain the code that polls the interrupt sources in sequence.

Thehighest priorityis tested first.

 Theparticular serviceroutineof thehighest prioritydeviceis served.

 Thedisadvantageis thattimerequired topollthem

canexceedthetimetoservetheminlargenumberofIO devices.

UsingHardware:

 Hardwareprioritysystemfunctionasanoverallmanager.Itacceptsinterruptrequestanddet

erminethepriorities.

 Tospeedup theoperation eachinterruptingdeviceshas itsown interruptvector.

 Nopollingisrequired,all decision areestablishedbyhardwarepriorityinterrupt unit.

 Itcan be establishedbyserial orparallel connectionofinterruptlines.

SerialorDaisyChainingPriority:

 Devicewith highestpriorityisplacedfirst.

 Devicethatwants theattention sendtheinterruptrequestto theCPU.

 CPU then sends the INTACK signal which is applied to PI(priority in) of the firstdevice.

 If it had requested the attention, it place its VAD(vector address) on the bus. And

itblock thesignal byplacing0in PO(priorityout)

 If not it passthe signal tonextdevicethrough PO(priorityout) byplacing1.

 Thisprocessiscontinueduntilappropriatedevice isfound.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

143

 Thedevice whosePIis 1and PO is 0 isthe device that send the interruptrequest.

ParallelPriorityInterrupt:

 Itconsist of interrupt registerwhosebits areset separatelybythe interruptingdevices.

 Priorityis establishedaccordingto theposition of the bits intheregister.

 Mask register is used to provide facility for the higher priority devices to interruptwhen

lower priority device is being serviced or disable all lower priority deviceswhenhigher is

beingserviced.

 Correspondinginterruptbit andmask bitareANDedand appliedto priorityencoder.

 Priorityencodergenerates two bits of vectoraddress.

 AnotheroutputfromitsetsIST(interruptstatusflipflop).

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

144

TheExecutionprocess ofInterrupt–InitiatedI/Oisrepresentedintheflowchart:

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

145

4.3.3. DirectMemoryAccess(DMA):

In the Direct Memory Access (DMA) the interface transfer the data into and out of

thememoryunit through the memorybus. Thetransferofdata betweenafast

storagedevicesuchas magnetic disk and memory is often limited by the speed of the CPU.

Removing the CPUfrom the path and letting the peripheral device manage the memory buses

directly wouldimprove the speed of transfer. This transfer technique is called Direct Memory

Access(DMA).

During the DMA transfer, the CPU is idle and has no control of the memory buses. A

DMAController takes over the buses to manage the transfer directly between the I/O device

andmemory.

The CPU may be placed in an idle state in a variety of ways. One common

methodextensively used in microprocessor is to disable the buses through special control

signalssuchas:

 BusRequest(BR)

 BusGrant(BG)

These two control signals in the CPU that facilitates the DMA transfer. The Bus

Request(BR) input is used by the DMA controller to request the CPU. When this input is

active, theCPUterminatestheexecutionofthecurrentinstructionandplacesthe

addressbus,databusand read write lines into a high Impedance state. High Impedance state

means that the outputisdisconnected.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

146

The CPU activates the Bus Grant (BG) output to inform the external DMA that the

BusRequest (BR) can now take control of the buses to conduct memory transfer

withoutprocessor.

When the DMA terminates the transfer, it disables the Bus Request (BR) line. The

CPUdisablestheBusGrant(BG),takescontrolof the busesandreturn toitsnormaloperation.

Thetransfercanbemade inseveral waysthatare:

i. DMABurst

ii. CycleStealing

i) DMA Burst :- In DMA Burst transfer, a block sequenceconsisting of a number

ofmemory words is transferred in continuous burst while the DMA controller is

masterofthe memorybuses.

ii) CycleStealing:-CyclestealingallowstheDMAcontroller totransferonedatawordata

time, afterwhich it mustreturns control of thebuses totheCPU.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

147

DMAController:

The DMA controller needs the usual circuits of an interface to communicate with

theCPUandI/O device.TheDMAcontroller hasthreeregisters:

i. AddressRegister

ii. WordCountRegister

iii. ControlRegister

i. AddressRegister:-AddressRegistercontainsanaddresstospecifythedesiredlocationin

memory.

ii. Word Count Register :- WC holds the number of words to be transferred.

Theregisteris incre/decrebyoneaftereach wordtransfer and internallytested forzero.

iii. ControlRegister:-ControlRegisterspecifiesthe modeoftransfer

The unit communicates with the CPU via the data bus and control lines. Theregistersin

theDMAareselected bytheCPU throughtheaddressbus byenablingtheDS (DMA select) and RS

(Register select) inputs. The RD (read) and WR (write)inputsarebidirectional.

When the BG (Bus Grant) input is 0, the CPU can communicatewith the DMA registers

through the data bus to read from or write to the DMAregisters. When BG =1, the DMA can

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

148

communicate directly with the memory byspecifyingan address inthe address busand activatingthe

RD orWR control.

DMA Transfer:

The CPU communicates with the DMA through the address and data buses as withany

interface unit. The DMA has its own address, which activates the DS and RSlines. The CPU

initializes the DMA through the data bus. Once the DMA receives thestartcontrol command,it

cantransfer betweentheperipheraland thememory.

When BG = 0 the RD and WR are input lines allowing the CPU tocommunicate with the

internal DMA registers. When BG=1, the RD and WR areoutput lines from the DMA controller to the

random access memory to specify thereadorwriteoperation ofdata.

Summary:

 Interface is the point where a connection is made between two different parts of asystem.

 The strobe control method of Asynchronous data transfer employs a single controllineto

timeeach transfer.

 The handshaking method solves the problem of strobe method by introducing

asecondcontrol signal that providesareplyto theunitthat initiates thetransfer.

 Programmed I/OmodeofdatatransfertheoperationsaretheresultsinI/Oinstructionswhichis a

part ofcomputer program.

 In the Interrupt Initiated I/O method an interrupt facility an interrupt command is

usedtoinform thedevice about thestart and endoftransfer.

 In the Direct Memory Access (DMA) the interface transfer the data into and out of

thememoryunit through thememorybus.

UNIT – 04 – Part - B

MEMORY ORGANIZATION

4.4. Memory Hierarchy:

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

149

Memory hierarchy system consists of all storage devices employed in a computer systemfrom

the slow but high capacity auxiliary memory to a relatively faster main memory, to an even

smallerandfaster cachememoryaccessibletothe highspeed processing logic.

 MainMemory:memoryunitthatcommunicatesdirectlywiththeCPU(RAM)

 AuxiliaryMemory:devicethatprovidebackupstorage(DiskDrives)

 CacheMemory:specialvery-high-speedmemory toincreasetheprocessingspeed(CacheRAM)

Above figure illustrates the components in a typical memory hierarchy. At the bottomof

thehierarchy arethe relatively slow magnetictapesused to storeremovable files.Next are

theMagneticdisksusedasbackupstorage.Themainmemoryoccupiesacentralpositionbybeingabletocom

municate directly with CPU and with auxiliary memory devices through an I/O process. Program

notcurrentlyneededinmainmemoryaretransferredintoauxiliarymemorytoprovidespaceforcurrentlyus

edprogramsanddata.

The cache memory is used for storing segments of programs currently being executed inthe

CPU. The I/O processor manages data transfer between auxiliary memory and main memory.

Theauxiliary memory has a large storage capacity is relatively inexpensive, but has low access

speedcompared to main memory. The cache memory is very small, relatively expensive, and has very

highaccessspeed.TheCPUhas directaccesstobothcacheandmainmemorybutnotto auxiliarymemory.

Multiprogramming:

ManyoperatingsystemsaredesignedtoenabletheCPUtoprocessanumberofindependentprogra

ms concurrently.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

150

Multiprogrammingreferstotheexistenceof2ormoreprogramsindifferentpartsofthememoryhie

rarchyatthesametime.

MemorymanagementSystem:

Thepartofthecomputersystemthatsupervisestheflowofinformationbetweenauxiliarymemorya

ndmainmemory.

4.5. MainMemory:

Main memory is the central storage unit in a computer system. It is a relatively large andfast

memory used to store programs and data during the computer operation. The principal

technologyused for the main memory is based on semi conductor integrated circuits. Integrated

circuits RAM chipsareavailableintwo possibleoperatingmodes,staticanddynamic.

 StaticRAM–Consistsofinternalflipflopsthatstorethebinaryinformation.

 DynamicRAM–

Storesthebinaryinformationintheformofelectricchargesthatareappliedtocapa

citors.

MostofthemainmemoryinageneralpurposecomputerismadeupofRAMintegratedcircuitchips,b

uta portionofthe memorymaybeconstructedwithROMchips.

Read Only Memory –Store programs that are permanently resident in the computer and fortables of

constants that do not change invalue once the production of thecomputer iscompleted.

.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

151

TheROMportionofmainmemoryisneededforstoringaninitialprogramcalledBootstrap loader.

 Bootstraploader–functionisstartthecomputersoftwareoperatingwhenpoweristurnedon.

 Bootstrapprogramloadsaportionofoperatingsystemfromdisctomainmemory

andcontrolis thentransferredtooperatingsystem.

RAMandROM CHIP:

 RAMchip–

utilizesbidirectionaldatabuswiththreestatebufferstoperformcommunicationwith CPU.

The block diagram of a RAM Chip is shown in Fig. The capacity of memory is 128

words ofeight bits (one byte) per word. This requires a 7-bit address and an 8-bit bidirectional

data bus. The readand write inputs specify the memory operation and the two chips select (CS)

control inputs are enablingthe chip only when it is selected by the microprocessor. The read and

write inputs are sometimescombined intoonelinelabelledR/W.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

152

The function table listed in Fig.(b) specifies the operation of the RAM chip. The unit is

inoperation only when CS1=1 and CS2=0.The bar on top of the second select variable indicates that

thisinput is enabled when it is equal to 0. If the chip select inputs are not enabled, or if they are

enabled butthe read or write inputs are not enabled, the memory is inhibited and its data bus is in a

high-impedancestate.WhenCS1=1andCS2=0,thememory canbeplacedinawriteorreadmode.Whenthe

WRinputisenabled,thememorystoresabytefromthedatabusintoalocationspecifiedbytheaddressinputli

nes. When the RD input is enabled, the content of the selected byte is placed into the data bus. The

RDand WR signals control the memory operation as well as the bus buffers associated with the

bidirectionaldata bus.

A ROM chip is organized externally in a similar manner. However, sincea ROM can only

read,the data bus can only be in an output mode. The block diagram of a ROM chip is shown in

fig.12-3.

ThenineaddresslinesintheROMchipspecifyanyoneofthe512bytesstoredinit.Thetwochipselectinputs

must be CS1=1 and CS2=0 for the unit to operate. Otherwise, the data bus is in a high-

impedancestate.

MemoryAddressMap:

The interconnection between memory and processor is then established from

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

153

knowledge of

thesizeofmemoryneededandthetypeofRAMandROMchipsavailable.Theaddressingofmemorycanbe

established by means of a table that specify the memory address assigned to each chip. The

tablecalled Memory address map, is a pictorial representation of assigned address space for each

chip in thesystem.

The memory address map for this configuration is shown in table 12-1. The component

columnspecifies whether a RAM or a ROM chip is used. The hexadecimal address column assigns a

range ofhexadecimal equivalent addresses for each chip. The address bus lines are listed in the

third column. TheRAM chips have 128 bytes and need seven address lines. The ROM chip has 512

bytes and needs 9address lines.

MemoryConnectiontoCPU:

RAMandROM chipsareconnected toa CPU through the dataand addressbuses. The

loworder linesin the address bus select the byte within the chips and other lines in the

address bus select aparticularchipthroughitschipselectinputs.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

154

The connection of memory chips to the CPU is shown in Fig.12-4. This configuration

gives amemory capacity of 512 bytes of RAM and 512 bytes of ROM. Each RAM receives the seven

low-

orderbitsoftheaddressbustoselectoneof128possiblebytes.TheparticularRAMchipselectedisdetermined

from lines 8 and 9 in the address bus. This is done through a 2 X 4 decoder whose outputs goto the

CS1 inputs in each RAM chip. Thus, when address lines 8 and 9 are equal to 00, the first RAM chipis

selected. When 01, the second RAM chip is select, and so on. The RD and WR outputs from

themicroprocessor are applied to the inputs of each RAM chip. The selection between RAM and ROM

isachievedthroughbusline10.TheRAMsareselectedwhenthebitinthislineis0,andtheROMwhenthe bit is

1. Address bus lines 1 to 9 are applied to the input address of ROM without going through thedecoder.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

155

The data bus of the ROM has only an output capability, whereas the data bus connected to theRAMs

cantransfer information inbothdirections.

4.6. AuxiliaryMemory:

 The time required to find an item stored in memory can be reduced considerably if

stored data can beidentified for access by the content of the data itself rather than by an address. A

memory unit accessedbycontentis calledanassociativememoryor content addressablememory(CAM).

 CAMisaccessedsimultaneouslyandinparallelonthebasisofdatacontentratherthanbys

pecific addressor location

 AssociativememoryismoreexpensivethanaRAMbecauseeachcellmusthavestorageca

pabilityaswellaslogiccircuits

 Argumentregister–holdsanexternalargumentforcontentmatching

 Keyregister–maskforchoosingaparticularfieldorkeyintheargumentword

HardwareOrganization

It consists of a memory array and logic for m words with n bits per word.

Theargument register A and key register K each have n bits, one for each bit of a word. The

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

156

match register Mhas m bits, one for each memory word. Each word in memory is compared in

parallel with the content ofthe argument register. The words that match the bits of the

argument register set a corresponding bit inthe match register. After the matching process,

those bits in the match register that have been setindicate the fact that their corresponding

words have been matched. Reading is accomplished by asequential access to memory for

those words whose corresponding bits in the match register have beenset.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

157

The relation between the memory array and external registers in an associative

memory is shownin Fig. The cells in the array are marked by the letter C with two subscripts.

The first subscript

givesthewordnumberandsecondspecifiesthebitpositionintheword.ThuscellCijisthecellforbitjinw

ordi.

AbitAjintheargumentregisteriscomparedwithallthebitsincolumnjofthearrayprovidedthatkj=1.T

his is done for all columns j=1,2,….n. If a match occurs between all the unmasked bits of

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

158

theargument and the bits in word I, the corresponding bit Mi in the match register is set to 1. If

one or moreunmaskedbits of the argumentandtheword do not match,Miis clearedto 0.

Itconsistsofflip-

flopstorageelementFijandthecircuitsforreading,writing,andmatchingthecell. The input bit is

transferred into the storage cell during a write operation. The bit stored is read outduring a

read operation. The match logic compares the content of the storage cell with

correspondingunmaskedbitof theargumentand providesanoutput forthedecision logicthatsets

thebitin Mi.

MatchLogic

The match logic for each word can be derived from the comparison algorithm for two

binary numbers.First,neglectthekeybitsandcomparethe argumentinAwith

thebitsstoredinthecellsofthewords.

Word i is equal to the argument in A if Aj=F ijfor j=1,2,…..,n. Two bits are equal if they

are both 1orboth 0.Theequalityoftwobitscanbeexpressedlogicallybythe Booleanfunction

xj=AjFij+Aj ‘Fij‘

wherexj = 1 if the pair of bits in position j are equal;otherwise , x j =0. For a word i is equal to

theargument in A we must have all xj variables equal to 1. This is the condition for setting the

correspondingmatchbitMito1.The Booleanfunctionforthisconditionis

Mi=x1x2x3……xn

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

159

Each cell requires two AND gate and one OR gate. The inverters for A and

K are needed once for eachcolumn and are used for all bits in the column. The output of

all OR gates in the cells of the same word goto theinput ofacommon ANDgatetogenerate

thematch signal for Mi. Miwill belogic 1ifa matchoccurs and0ifnomatchoccurs.

ReadOperation:

Ifmorethanonewordinmemorymatchestheunmaskedargumentfield,allthematchedwordswi

llhave1’s inthecorrespondingbit positionof thematchregister

 Inreadoperationallmatchedwordsarereadin sequencebyapplyingareadsig

naltoeachwordlinewhosecorrespondingMibit isalogic1

 Inapplicationswherenotwoidenticalitemsarestoredinthememory,only

onewordmaymatch,inwhichcasewecanuseMioutputdirectlyasareadsignalforthecorr

espondingword

WriteOperation

Cantaketwodifferentforms;

1. Entire memory may be loaded with new information

2. Unwantedwordstobedeletedandnewwordstobeinserted

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

160

1. Entire memory : writing can be done by addressing each location in sequence –

This makes it randomaccess memory for writing and content addressable memory for

reading – number of lines needed fordecoding isdWherem=2d,misnumber of words.

2. Unwantedwordstobedeletedandnew wordstobeinserted:

 Tagregisteris usedwhichhasas manybits astherearewordsinmemory

 Foreveryactive(valid)wordinmemory,thecorrespondingbitintagregisterissetto1

 Whenwordisdeletedthecorrespondingtagbitisresetto0

 Thewordisstoredinthememorybyscanningthetagregisteruntilthefirst0bitisencount

eredAfterstoringthe wordthe bitis setto 1.

4.7. CacheMemory:

 Effectiveness of cache mechanism is based on a property of computer

programs called “localityofreference”

 Thereferencestomemoryatanygiventimeintervaltendtobe confinedwithinalocalizedareas

 Analysis of programs shows that most of their execution time is spent on routines

in whichinstructions are executed repeatedlyThese instructions may be – loops, nested loops , or

fewprocedures thatcalleachother.

 Manyinstructionsinlocalizedareasofprogram areexecutedrepeatedly during some

time period and reminder of the program is accessed

infrequentlyThispropertyiscalled“LocalityofReference”.

LocalityofReference

Localityofreferenceismanifestedintwoways:

1. Temporal-meansthatarecentlyexecutedinstructionislikelytobeexecutedagainverysoon.

 The information which will be used in near future is likely to be in use already(

e.g. reuseof informationinloops)

2. Spatial- means that instructions in close proximity to a recently executed instruction are

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

161

also likelytobeexecutedsoon

 Ifawordisaccessed,adjacent(near)wordsarelikelytobeaccessedsoon(e.g.relatedd

ataitems(arrays)areusuallystoredtogether;instructionsareexecutedsequentially)

 If active segments of a program can be placed in afast (cache) memory , then total

execution timecanbereducedsignificantly

 Temporal Locality of Reference suggests whenever an information (instruction or data)

is neededfirst,thisitemshouldbebroughtintocache

 Spatial aspect of Locality of Reference suggeststhat instead of bringing just one item

from themain memory to the cache ,it is wise to bring several items that reside at adjacent

addresses aswell(ieablockof information)

Principleofcache:

The main memory can store 32k words of 12 bits each. The cache is capable of

storing 512 ofthesewords at any given time. For every word stored , thereis a duplicate

copy in main memory. TheCpu communicates with both memories. It first sends a 15 bit

address to cahache. If there is a hit, theCPU accepts the 12 bit data from cache. If there

is a miss, the CPU reads the word from main

memoryandthewordisthentransferredtocache.

 WhenareadrequestisreceivedfromCPU,contentsofablockofmemorywordsco

ntainingthelocationspecifiedaretransferredintocache

 Whentheprogramreferencesanyofthelocationsinthisblock,thecontentsarere

adfromthecacheNumber of blocks incacheis smaller thannumberof blocks

inmainmemory.

 Correspondencebetweenmainmemoryblocksandthoseinthecacheisspecifiedbyama

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

162

ppingfunction

 Assumecacheisfullandmemorywordnotincacheisreferenced

 Controlhardwaredecideswhichblockfromcacheistoberemovedtocreatespacefornew

blockcontainingreferencedwordfrommemory

 Collection of rules for making this decision is called “Replacement algorithm

”.

CacheHitOperation:

 CPUissuesRead/Writerequestsusingaddressesthat refertolocations

inmainmemory

 Cachecontrolcircuitrydetermineswhetherrequestedwordcurrentlyexistsincache

 Ifitdoes,Read/Writeoperationisperformedontheappropriatelocationincache(Rea

d/WriteHit)

Read/WriteoperationsoncacheincaseofHit:

 InReadoperationmainmemoryisnotinvolved.

 InWriteoperationtwothingscanhappen.

1. Cacheandmainmemorylocationsareupdated simultaneously(“WriteThrough”)OR

2. Updateonlycachelocationandmarkitas“Dirtyor ModifiedBit”andupdatemainmemory

location atthetimeofcacheblockremoval(“ WriteBack” or“ CopyBack”).

Read/WriteoperationsoncacheincaseofMissReadOperation:

WhenaddressedwordisnotincacheReadMissoccurstherearetwowaysthiscanbedealtwith

1. Entireblockofwordsthatcontaintherequestedwordiscopiedfrommainmemorytocacheand

theparticularwordrequestedis forwardedtoCPUfromthecache(LoadThrough)(OR)

2. TherequestedwordfrommemoryissenttoCPUfirstandthenthecacheisupdated(EarlyRest

art)

WriteOperation:

 IfaddressedwordisnotincacheWriteMissoccurs

 Ifwritethroughprotocolisusedinformationisdirectlywrittenintomainmemory

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

163

 Inwritebackprotocol,blockcontainingthewordisfirstbroughtintocache,thedesiredw

ordisthen overwritten.

4.8. MappingFunctions:

 Correspondencebetweenmainmemoryblocksandthoseinthecacheisspecifiedbyame

morymappingfunction

Therearethreetechniques inmemorymapping

 DirectMapping

 AssociativeMapping

 SetAssociativeMapping

Directmapping:

A particular blockof main memory can be broughtto a particular blockofcache

memory.So,itis notflexible.

IntheCPUaddressof15bitsisdividedintotwofields.Thenineleastsignificantbitsconsti

tutetheindexfieldandremainingsixbitsformthetagfield.Themainmemoryneedsanaddresst

hatincludesboththetagandtheindexbits.Thenumberofbitsintheindexfieldisequaltothenu

mberof addressbitsrequiredtoaccessthecachememory.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

164

The direct mapping cache organization uses the n- bit address to access the main

memory andthe k-bit index to access the cache.Each word in cache consists of the data

word and associated tag.When a new word is first brought into the cache, the tag bits are

stored alongside the data bits.

When theCPU generates a memory request, the index field is used the index

field is used for the address toaccess the cache. The tag field of the CPU address is

compared with the tag in the word read from thecache. If the two tags match, there is a

hit and the desired data word is in cache. If there is no match,there

isamissandtherequiredword isread frommainmemory.

In fig,the index field is now divided into two parts: Block field and The word field.

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

165

In a 512word cache there are 64 blocks of 8 words each, since 64X8=512. The block

number is specified with a 6bit field and the wordwith in the block is specified with a 3-

bit field. Thetag field stored within the cacheiscommontoalleight wordsofthesameblock.

Associativemapping:

In this mapping function, any block of Main memory can potentially reside in any

cache blockposition. Thisismuchmoreflexiblemappingmethod.

In fig, the associative memory stores both address and content(data) of the

memory word.This permits any location in cache to store any word from main

memory.The diagram shows three wordspresently stored in the cache. The address

value of 15 bits is shown as a five-digit octal number and itscorresponding 12-bit word is

shown as a four-digit octal number. A CPU address of 15-bits is placed

intheargumentregisterandtheassociativememoryissearchedforamatchingaddress.Ifaddr

essisfound, the corresponding 12-bit data is read and sent to the CPU. If no match

occurs, the main memory isaccessedfor theword.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

166

Set-associativemapping:

In this method, blocks of cache are grouped into sets, and the mapping allows a

block of mainmemory to reside in any block of a specific set. From the flexibility point

of view, it is in between to theothertwomethods.

The octal numbers listed in Fig. are with reference to the

mainmemorycontents.WhentheCPU

generatesamemoryrequest,theindexvaluesoftheaddressisusedtoaccess

thecache.ThetagfieldoftheCPUaddress is then compared with both tags in the cache to

determine if a match occurs. The comparisonlogic dine by an associative search of the

tags in the set similar to anassociative memory search thus thename“SetAssociative”.

ReplacementPolicies:

 When the cache is full and there is necessity to bring new data to cache ,

then a decision must bemadeastowhichdatafromcacheis toberemoved

 The guideline for taking a decision about which data is to be removed is

called replacement policyReplacementpolicydependsonmapping

 ThereisnospecificpolicyincaseofDirectmappingaswehavenochoiceofblock

placementincacheReplacementPolicies

Incaseofassociativemapping

 Asimpleprocedureistoreplacecellsofthecacheinroundrobinorderwhenever

anewwordisrequestedfrommemory

 ThisconstitutesaFirst-inFirst-out(FIFO)replacementpolicy

Incaseofsetassociativemapping

 Randomreplacement

 First-inFirst-out(FIFO)(item chosenistheitemthathasbeeninthesetlongest)

 LeastRecentlyUsed(LRU)(itemchosenistheitem thathasbeenleastrecentl

yusedbyCPU)

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

167

4.9. VirtualMemory:

 Earlydays memorywas expensive–hencesmall

 Programmerswereusingsecondarystorageforoverlaying

 Programmerswereresponsibleforbreakingprogramsintooverlays,decidewheretokeepinsec

ondary

memory,arrangingfortransferofoverlaysbetweenmainmemoryandsecondarymemory.

In1961ManchesterUniversityproposedamethodforperformingoverlayprocessautomatical

lywhichhasgivenrisetotheconceptofVirtual memorytoday.

VirtualMemory-Background

 Separateconceptofaddressspaceand memorylocations

 Programsreferenceinstructionsanddatathatisindependentofavailablephysicalme

moryAddresses issued by processor for Instructions or Data are called Virtual

orLogical addresses

 Virtual addresses are translated in to physical addresses by a combination of

Hardwareand Softwarecomponents

TypesofMemory

 Real memory

 Mainmemory

 Virtualmemory

 Memoryondisk

Allowsforeffectivemultiprogrammingand relievestheuseroftightconstraints

ofmainmemory.

AddressSpaceandMemorySpace

 Addressusedbyaprogrammeriscalledvirtualaddressandsetofsuchaddressesiscalled

addressspace.

 Addressinmainmemoryiscalledalocation orphysicaladdressandsetofsuchlocatio

nsiscalledthememoryspace.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

168

 TheAddressSpaceisallowedtobelarger thanthememoryspaceincomputerswithvir

tualmemory.

Inamultiprogramcomputersystem,programsanddataaretransferredtoandfromau

xiliarymemoryandmainmemorybasedondemandsimposedbytheCPU.Supposethatprogr

am1iscurrentlybeing executed in the CPU. Program1 and a portion of its associated

data are moved from auxiliarymemory into main memory as shown in fig. Portions of

programs and data need not be incontiguous locations in memory since information is

being moved in out, and empty spaces may beavailable inscatteredlocationsin memory.

In fig, to map a virtual address of 20 bits to a physical address of 15 bits. The mapping is

adynamic operation, which means that every address is translated immediately as a word is

referenced byCPU.The mapping table may be stored in a separate memory. In first case, an

additional unit is requiredas well as one extra memory access time. In the second case, the

table takes space from main memoryand two accesses to memory are required with program

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

169

running at half speed. A third alternative is to useanassociativememory.

AddressMappingUsingPages

The physical memory is broken down into groups of equal size called blocks,

which may

rangefrom64to4096wordeach.Thetermpagereferstogroupsofaddressspaceofthesamesiz

e.Portionsofprograms are moved fromauxiliary memory to main memory in records

equal to the sizeofa page.Theterm“pageframe” issometimes usedtodenoteablock.

In fig, a virtual address has 13 bits. Since each page consists of 1024 words, the

high orderthree bits of virtual address will specify one of the eight pages and the low

order 10 bits give the lineaddresswithinthepage.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

170

The organizationof the memory mapping table in a paged system is shown in

Fig.12-19. Thememory page table consists of eight word , one for each page. The

address in the page tabledenotes

thepagenumberandthecontentofthewordgivestheblocknumberwherethatpageisstoredin

mainmemory. The table showsthat pages 1,2,5 and 6 are now available in main

memory in blocks 3,0,1 and 2,respectively.

AssociativeMemoryPageTable

Arandom-accessmemorypagetableisinefficientwithrespecttostorageutilization.

Replace the random access memory-page table with an associative memory of

four words asshown in Fig12-20. Each entry in the associative memory array consists

of two fields. The first three

bitsspecifyafieldforstoringthepagenumber.Thelasttwobitsconstituteafieldforstoringthe

blocknumber.Thevirtualaddress isplacedintheargumentregister.

AddressTranslation

Atableisneededtomapvirtualaddresstoaphysicaladdress(dynamicoperation)This

tablemaybekeptin

 aseparatememoryor

 mainmemoryor

 associativememory

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

171

UNIT – 05 – Part - A

REDUCED INSTRUCTION SET COMPUTER

CISC Processor:

 The CISC Stands for Complex Instruction Set Computer, developed by the Intel. It has a

large collection of complex instructions that range from simple to very complex and specialized in the

assembly language level, which takes a long time to execute the instructions. So, CISC approaches

reducing the number of instruction on each program and ignoring the number of cycles per instruction. It

emphasizes to build complex instructions directly in the hardware because the hardware is always faster

than software. However, CISC chips are relatively slower as compared to RISC chips but use little

instruction than RISC. Examples of CISC processors are VAX, AMD, Intel x86 and the System/360.

Characteristics of CISC Processor:

Following are the main characteristics of the RISC processor:

1. The length of the code is shorts, so it requires very little RAM.

2. CISC or complex instructions may take longer than a single clock cycle to execute the code.

3. Less instruction is needed to write an application.

4. It provides easier programming in assembly language.

5. Support for complex data structure and easy compilation of high-level languages.

6. It is composed of fewer registers and more addressing nodes, typically 5 to 20.

7. Instructions can be larger than a single word.

8. It emphasizes the building of instruction on hardware because it is faster to create than the

software.

CISC Processors Architecture:

 The CISC architecture helps reduce program code by embedding multiple operations on each

program instruction, which makes the CISC processor more complex. The CISC architecture-based

computer is designed to decrease memory costs because large programs or instruction required large

memory space to store the data, thus increasing the memory requirement, and a large collection of

memory increases the memory cost, which makes them more expensive.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

172

Advantages of CISC Processors:

1. The compiler requires little effort to translate high-level programs or statement languages into

assembly or machine language in CISC processors.

2. The code length is quite short, which minimizes the memory requirement.

3. To store the instruction on each CISC, it requires very less RAM.

4. Execution of a single instruction requires several low-level tasks.

5. CISC creates a process to manage power usage that adjusts clock speed and voltage.

6. It uses fewer instructions set to perform the same instruction as the RISC.

Disadvantages of CISC Processors:

1. CISC chips are slower than RSIC chips to execute per instruction cycle on each program.

2. The performance of the machine decreases due to the slowness of the clock speed.

3. Executing the pipeline in the CISC processor makes it complicated to use.

4. The CISC chips require more transistors as compared to RISC design.

5. In CISC it uses only 20% of existing instructions in a programming event.

RISC Processor:

 RISC stands for Reduced Instruction Set Computer Processor, a microprocessor

architecture with a simple collection and highly customized set of instructions. It is built to minimize the

instruction execution time by optimizing and limiting the number of instructions. It means each

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

173

instruction cycle requires only one clock cycle, and each cycle contains three parameters: fetch, decode

and execute. The RISC processor is also used to perform various complex instructions by combining

them into simpler ones. RISC chips require several transistors, making it cheaper to design and reduce the

execution time for instruction.

Examples of RISC processors are SUN's SPARC, PowerPC, Microchip PIC processors, RISC-V.

Advantages of RISC Processor:

1. The RISC processor's performance is better due to the simple and limited number of the

instruction set.

2. It requires several transistors that make it cheaper to design.

3. RISC allows the instruction to use free space on a microprocessor because of its simplicity.

4. RISC processor is simpler than a CISC processor because of its simple and quick design, and it

can complete its work in one clock cycle.

Disadvantages of RISC Processor:

1. The RISC processor's performance may vary according to the code executed because subsequent

instructions may depend on the previous instruction for their execution in a cycle.

2. Programmers and compilers often use complex instructions.

3. RISC processors require very fast memory to save various instructions that require a large

collection of cache memory to respond to the instruction in a short time.

RISC Architecture:

 It is a highly customized set of instructions used in portable devices due to system reliability

such as Apple iPod, mobiles/smartphones, Nintendo DS,

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

174

Features of RISC Processor:

Some important features of RISC processors are:

1. One cycle execution time: For executing each instruction in a computer, the RISC processors

require one CPI (Clock per cycle). And each CPI includes the fetch, decode and execute method

applied in computer instruction.

2. Pipelining technique: The pipelining technique is used in the RISC processors to execute

multiple parts or stages of instructions to perform more efficiently.

3. A large number of registers: RISC processors are optimized with multiple registers that can be

used to store instruction and quickly respond to the computer and minimize interaction with

computer memory.

4. It supports a simple addressing mode and fixed length of instruction for executing the pipeline.

5. It uses LOAD and STORE instruction to access the memory location.

6. Simple and limited instruction reduces the execution time of a process in a RISC.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

175

Difference between the RISC and CISC Processors:

RISC CISC

It is a Reduced Instruction Set Computer. It is a Complex Instruction Set Computer.

It emphasizes on software to optimize the instruction

set.

It emphasizes on hardware to optimize the

instruction set.

It is a hard wired unit of programming in the RISC

Processor.

Microprogramming unit in CISC Processor.

It requires multiple register sets to store the

instruction.

It requires a single register set to store the

instruction.

RISC has simple decoding of instruction. CISC has complex decoding of instruction.

Uses of the pipeline are simple in RISC. Uses of the pipeline are difficult in CISC.

It uses a limited number of instruction that requires

less time to execute the instructions.

It uses a large number of instruction that requires

more time to execute the instructions.

It uses LOAD and STORE that are independent

instructions in the register-to-register a program's

interaction.

It uses LOAD and STORE instruction in the

memory-to-memory interaction of a program.

RISC has more transistors on memory registers. CISC has transistors to store complex

instructions.

The execution time of RISC is very short. The execution time of CISC is longer.

RISC architecture can be used with high-end

applications like telecommunication, image

processing, video processing, etc.

CISC architecture can be used with low-end

applications like home automation, security

system, etc.

It has fixed format instruction. It has variable format instruction.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

176

The program written for RISC architecture needs to

take more space in memory.

Program written for CISC architecture tends to

take less space in memory.

Example of RISC: ARM, PA-RISC, Power

Architecture, Alpha, AVR, ARC and the SPARC.

Examples of CISC: VAX, Motorola 68000

family, System/360, AMD and the Intel x86

CPUs.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

177

UNIT – 05 – Part -B

PIPELINE AND VECTOR PROCESSING

Parallel processing:

 Parallel processing is a term used for a large class of techniques that are used to provide

simultaneous data-processing tasks for the purpose of increasing the computational speed of a computer

system.

 It refers to techniques that are used to provide simultaneous data processing.

 The system may have two or more ALUs to be able to execute two or more instruction at the

same time. The system may have two or more processors operating concurrently. It can be achieved by

having multiple functional units that perform same or different operation simultaneously.

Example of parallel Processing:

Multiple Functional Unit:

Separate the execution unit into eight functional units operating in parallel.

There are variety of ways in which the parallel processing can be classified;

 Internal Organization of Processor

 Interconnection structure between processors

 Flow of information through system

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

178

Architectural Classification:

Flynn's classification

 Based on the multiplicity of Instruction Streams and Data Streams

 Instruction Stream

 Sequence of Instructions read from memory

 Data Stream

 Operations performed on the data in the processor

 SISD represents the organization containing single control unit, a processor unit and a memory

unit. Instructions are executed sequentially and system may or may not have internal parallel processing

capabilities.

 SIMD represents an organization that includes many processing units under the

supervision of a common control unit.

 MISD structure is of only theoretical interest since no practical system has been constructed

using this organization.

 MIMD organization refers to a computer system capable of processing several programs at the

same time.

The main difference between multicomputer system and multiprocessor system is that the

multiprocessor system is controlled by one operating system that provides interaction between

processors and all the component of the system cooperate in the solution of a problem.

Parallel Processing can be discussed under following topics:

 Pipeline Processing

 Vector Processing

 Array Processors

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

179

Pipelining:

 A technique of decomposing a sequential process into suboperations, with each

subprocess being executed in a special dedicated segment that operates concurrently with all other

segments.

 It is a technique of decomposing a sequential process into sub operations, with each sub

process being executed in a special dedicated segments that operates concurrently with all other segments.

 Each segment performs partial processing dictated by the way task is partitioned.

 The result obtained from each segment is transferred to next segment.

 The final result is obtained when data have passed through all segments.

 Suppose we have to perform the following task:

 Each sub operation is to be performed in a segment within a pipeline. Each segment has one or

two registers and a combinational circuit.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

180

Operations in each Pipeline Stage:

General Structure of a 4-Segment Pipeline

Space-Time Diagram

The following diagram shows 6 tasks T1 through T6 executed in 4segments.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

181

Pipeline Speed Up:

Consider the case where a k-segment pipeline used to execute n tasks.

 n = 6 in previous example

 k = 4 in previous example

 Pipelined Machine (k stages, n tasks)

 The first task t1 requires k clock cycles to complete its operation since there are k segments

 The remaining n-1 tasks require n-1 clock cycles

 The n tasks clock cycles = k+(n-1) (9 in previous example)

 Conventional Machine (Non-Pipelined)

 Cycles to complete each task in nonpipeline = k

 For n tasks, n cycles required is Speedup (S)

 S = Nonpipeline time /Pipeline time

 For n tasks: S = nk/(k+n-1)

 As n becomes much larger than k-1; Therefore, S = nk/n = k

Pipeline and Multiple Function Units:

Example:

 4-stage pipeline

 100 tasks to be executed

 1 task in non-pipelined system; 4 clock cycles

 Pipelined System : k + n - 1 = 4 + 99 = 103 clock cycles Non-Pipelined System : n*k = 100 * 4 =

400 clock cycles Speedup : Sk = 400 / 103 = 3.88

Types of Pipelining:

 Arithmetic Pipeline

 Instruction Pipeline

Arithmetic Pipeline:

 Pipeline arithmetic units are usually found in very high speed computers.

 They are used to implement floating point operations.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

182

 We will now discuss the pipeline unit for the floating point addition and subtraction.

 The inputs to floating point adder pipeline are two normalized floating point numbers.

 A and B are mantissas and a and b are the exponents.

 The floating point addition and subtraction can be performed in four segments. Floating-point

adder:

 Compare the exponents

 Align the mantissa

 Add/sub the mantissa

 Normalize the result

 X = A x 10a = 0.9504 x 103

 Y = B x 10b = 0.8200 x 102

 Compare exponents : 3 - 2 = 1

 Align mantissas

X = 0.9504 x 103

Y = 0.08200 x 103

 Add mantissas

Z = 1.0324 x 103

 Normalize result

Z = 0.10324 x 104

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

183

Instruction Pipeline:

 Pipeline processing can occur not only in the data stream but in the instruction stream as well.

 An instruction pipeline reads consecutive instruction from memory while previous instruction are

being executed in other segments.

 This caused the instruction fetch and execute segments to overlap and perform simultaneous

operation.

Four Segment CPU Pipeline:

 FI segment fetches the instruction.

 DA segment decodes the instruction and calculate the effective address.

 FO segment fetches the operand.

 EX segment executes the instruction.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

184

Instruction Cycle:

Pipeline processing can occur also in the instruction stream. An instruction pipeline reads

consecutive instructions from memory while previous instructions are being executed in other segments.

Six Phases* in an Instruction Cycle.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

185

[1] Fetch an instruction from memory

[2] Decode the instruction

[3] Calculate the effective address of the operand

[4] Fetch the operands from memory

[5] Execute the operation

[6] Store the result in the proper place

 Some instructions skip some phases

 Effective address calculation can be done in the part of the decoding phase

 Storage of the operation result into a register is done automatically in the execution phase

==> 4-Stage Pipeline

[1] FI: Fetch an instruction from memory

[2] DA: Decode the instruction and calculate the effective address of the operand

[3] FO: Fetch the operand

[4] EX: Execute the operation

Pipeline Conflicts :

Pipeline Conflicts : There are 3 major difficulties

1) Resource conflicts: memory access by two segments at the same time. Most of these conflicts can be

resolved by using separate instruction and data memories.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

186

2) Data dependency: when an instruction depend on the result of a previous instruction, but this result is

not yet available.

Example: an instruction with register indirect mode cannot proceed to fetch the operand if the

previous instruction is loading the address into the register.

3) Branch difficulties: branch and other instruction (interrupt, ret, ..) that change the value of PC.

Handling Data Dependency:

This problem can be solved in the following ways:

 Hardware interlocks: It is the circuit that detects the conflict situation and delayed the

instruction by sufficient cycles to resolve the conflict.

 Operand Forwarding: It uses the special hardware to detect the conflict and avoid it by

routing the data through the special path between pipeline segments.

 Delayed Loads: The compiler detects the data conflict and reorder the instruction as

necessary to delay the loading of the conflicting data by inserting no operation instruction.

Handling of Branch Instruction:

 Pre fetch the target instruction.

 Branch target buffer(BTB) included in the fetch segment of the pipeline

 Branch Prediction

Delayed Branch RISC Pipeline:

 Simplicity of instruction set is utilized to implement an instruction pipeline using small number of

sub-operation, with each being executed in single clock cycle.

Since all operation are performed in the register, there is no need of effective address calculation.

Three Segment Instruction Pipeline:

 I: Instruction Fetch

 A: ALU Operation

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

187

 E: Execute Instruction Delayed Load:

Delayed Branch:

Let us consider the program having the following 5 instructions

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

188

Vector processing:

Vector processing is a central processing unit that can perform the complete vector input in

individual instruction. It is a complete unit of hardware resources that implements a sequential set

of similar data elements in the memory using individual instruction.

The scientific and research computations involve many computations which require

extensive and high-power computers. These computations when run in a conventional computer

may take days or weeks to complete. The science and engineering problems can be specified in

methods of vectors and matrices using vector processing.

Features of Vector Processing

There are various features of Vector Processing which are as follows −

 A vector is a structured set of elements. The elements in a vector are scalar quantities. A

vector operand includes an ordered set of n elements, where n is known as the length of the

vector.

 Each clock period processes two successive pairs of elements. During one single clock

period, the dual vector pipes and the dual sets of vector functional units allow the

processing of two pairs of elements.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

189

 As the completion of each pair of operations takes place, the results are delivered to

appropriate elements of the result register. The operation continues just before the various

elements processed are similar to the count particularized by the vector length register.

 In parallel vector processing, more than two results are generated per clock cycle. The

parallel vector operations are automatically started under the following two circumstances −

 When successive vector instructions facilitate different functional units

and multiple vector registers.

 When successive vector instructions use the resulting flow from one

vector register as the operand of another operation utilizing a different

functional unit. This phase is known as chaining.

 A vector processor implements better with higher vectors because of the foundation delay in

a pipeline.

 Vector processing decrease the overhead related to maintenance of the loop-control

variables which creates it more efficient than scalar processing.

Array processors:

Array processors are also known as multiprocessors or vector processors. They perform

computations on large arrays of data. Thus, they are used to improve the performance of the

computer.

Types of Array Processors

There are basically two types of array processors:

 Attached Array Processors

 SIMD Array Processors

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

190

Attached Array Processors:

 An attached array processor is a processor which is attached to a general purpose

computer and its purpose is to enhance and improve the performance of that computer in numerical

computational tasks. It achieves high performance by means of parallel processing with multiple

functional units.

SIMD Array Processors

 SIMD is the organization of a single computer containing multiple processors

operating in parallel. The processing units are made to operate under the control of a common

control unit, thus providing a single instruction stream and multiple data streams.

 A general block diagram of an array processor is shown below. It contains a set of

identical processing elements (PE's), each of which is having a local memory M. Each processor

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

191

element includes an ALU and registers. The master control unit controls all the operations of the

processor elements. It also decodes the instructions and determines how the instruction is to be

executed.

 The main memory is used for storing the program. The control unit is responsible for

fetching the instructions. Vector instructions are send to all PE's simultaneously and results are

returned to the memory.

 The best known SIMD array processor is the ILLIAC IV computer developed by

the Burroughs corps. SIMD processors are highly specialized computers. They are only suitable

for numerical problems that can be expressed in vector or matrix form and they are not suitable for

other types of computations.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

192

Why use the Array Processor:

 Array processors increases the overall instruction processing speed.

 As most of the Array processors operates asynchronously from the host CPU, hence it

improves the overall capacity of the system.

 Array Processors has its own local memory, hence providing extra memory for systems

with low memory.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

193

UNIT – 05 – Part - C

MULTIPROCESSORS

 A multiprocessor is a computer system with two or more central processing units

(CPUs), with each one sharing the common main memory as well as the peripherals. This helps in

simultaneous processing of programs.

` The key objective of using a multiprocessor is to boost the system’s execution speed,

with other objectives being fault tolerance and application matching.

 A good illustration of a multiprocessor is a single central tower attached to two

computer systems. A multiprocessor is regarded as a means to improve computing speeds,

performance and cost-effectiveness, as well as to provide enhanced availability and reliability.

 Most computer systems are single processor systems i.e they only have one processor.

However, multiprocessor or parallel systems are increasing in importance nowadays. These

systems have multiple processors working in parallel that share the computer clock, memory, bus,

peripheral devices etc. An image demonstrating the multiprocessor architecture is −

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

194

Types of Multiprocessors:

 There are mainly two types of multiprocessors i.e. symmetric and asymmetric

multiprocessors. Details about them are as follows −

Symmetric Multiprocessors

 In these types of systems, each processor contains a similar copy of the operating

system and they all communicate with each other. All the processors are in a peer to peer

relationship i.e. no master - slave relationship exists between them.

 An example of the symmetric multiprocessing system is the Encore version of Unix

for the Multimax Computer.

Asymmetric Multiprocessors

 In asymmetric systems, each processor is given a predefined task. There is a master

processor that gives instruction to all the other processors. Asymmetric multiprocessor system

contains a master slave relationship.

 Asymmetric multiprocessor was the only type of multiprocessor available before

symmetric multiprocessors were created. Now also, this is the cheaper option.

Advantages of Multiprocessor Systems:

There are multiple advantages to multiprocessor systems. Some of these are −

More reliable Systems

 In a multiprocessor system, even if one processor fails, the system will not halt. This

ability to continue working despite hardware failure is known as graceful degradation. For

example: If there are 5 processors in a multiprocessor system and one of them fails, then also 4

processors are still working. So the system only becomes slower and does not ground to a halt.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

195

Enhanced Throughput

 If multiple processors are working in tandem, then the throughput of the system

increases i.e. number of processes getting executed per unit of time increase. If there are N

processors then the throughput increases by an amount just under N.

More Economic Systems

 Multiprocessor systems are cheaper than single processor systems in the long run

because they share the data storage, peripheral devices, power supplies etc. If there are multiple

processes that share data, it is better to schedule them on multiprocessor systems with shared

data than have different computer systems with multiple copies of the data.

Disadvantages of Multiprocessor Systems:

There are some disadvantages as well to multiprocessor systems. Some of these are:

Increased Expense

 Even though multiprocessor systems are cheaper in the long run than using multiple

computer systems, still they are quite expensive. It is much cheaper to buy a simple single

processor system than a multiprocessor system.

Complicated Operating System Required

 There are multiple processors in a multiprocessor system that share peripherals,

memory etc. So, it is much more complicated to schedule processes and impart resources to

processes.than in single processor systems. Hence, a more complex and complicated operating

system is required in multiprocessor systems.

Large Main Memory Required

 All the processors in the multiprocessor system share the memory. So a much larger

pool of memory is required as compared to single processor systems.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

196

Characteristics of Multiprocessors:

 A multiprocessor is a single computer that has multiple processors. It is possible that the

processors in the multiprocessor system can communicate and cooperate at various levels of

solving a given problem. The communications between the processors take place by sending

messages from one processor to another, or by sharing a common memory.

 There are the major characteristics of multiprocessors are as follows −

 Parallel Computing − This involves the simultaneous application of multiple processors.

These processors are developed using a single architecture to execute a common task. In

general, processors are identical and they work together in such a way that the users are

under the impression that they are the only users of the system. In reality, however, many

users are accessing the system at a given time.

 Distributed Computing − This involves the usage of a network of processors. Each

processor in this network can be considered as a computer in its own right and have the

capability to solve a problem. These processors are heterogeneous, and generally, one task

is allocated to a single processor.

 Supercomputing − This involves the usage of the fastest machines to resolve big and

computationally complex problems. In the past, supercomputing machines were vector

computers but at present, vector or parallel computing is accepted by most people.

 Pipelining − This is a method wherein a specific task is divided into several subtasks that

must be performed in a sequence. The functional units help in performing each subtask. The

units are attached serially and all the units work simultaneously.

 Vector Computing − It involves the usage of vector processors, wherein operations such as

‘multiplication’ are divided into many steps and are then applied to a stream of operands

(“vectors”).

 Systolic − This is similar to pipelining, but units are not arranged in a linear order. The

steps in systolic are normally small and more in number and performed in a lockstep

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

197

manner. This is more frequently applied in special-purpose hardware such as image or

signal processors.

Interconnection Structures:

 The interconnection between the components of a multiprocessor System can have

different physical configurations depending n the number of transfer paths that are available

between the processors and memory in a shared memory system and among the processing

elements in a loosely coupled system.

Some of the schemes are as: -

 Time-Shared Common Bus

 Multiport Memory

 Crossbar Switch

 Multistage Switching Network

 Hypercube System

Time shared common Bus:

 All processors (and memory) are connected to a common bus or busses

 Memory access is fairly uniform, but not very scalable

 A collection of signal lines that carry module-to-module communication

 Data highways connecting several digital system elements

 Operations of Bus

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

198

 In the above figure we have number of local buses to its own local memory and to one

or more processors. Each local bus may be connected to a CPU, an IOP, or any combinations of

processors. A system bus controller links each local bus to a common system bus. The I/O

devices connected to the local IOP, as well as the local memory, are available to the local

processor. The memory connected to the common system bus is shared by all processors. If an

IOP is connected directly to the system bus the I/O devices attached to it may be made available

to all processors.

Disadvantage.:

 Only one processor can communicate with the memory or another processor at any

given time.

 As a consequence, the total overall transfer rate within the system is limited by the

speed of the single path.

Multiport Memory:

 Each port serves a CPU Memory Module Control Logic

 Each memory module has control logic

 Resolve memory module conflicts Fixed priority among CPUs

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

199

Advantages

The high transfer rate can be achieved because of the multiple paths.

Disadvantages:

It requires expensive memory control logic and a large number of cables and connections

Crossbar switch:

 Each switch point has control logic to set up the transfer path between a processor and a

memory.

 It also resolves the multiple requests for access to the same memory on the predetermined

priority basis.

 Though this organization supports simultaneous transfers from all memory modules

because there is a separate path associated with each Module.

 The H/w required to implement the switch can become quite large and complex

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

200

Advantage:

 Supports simultaneous transfers from all memory modules

 Disadvantage:

The hardware required to implement the switch can become quite large and complex.

 Multistage Switching Network:

 The basic component of a multi stage switching network is a two-input, twooutput

interchange switch.

Using the 2x2 switch as a building block, it is possible to build a multistage network to

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

201

control the communication between a number of sources and destinations.

To see how this is done, consider the binary tree shown in Fig. below.

Certain request patterns cannot be satisfied simultaneously. i.e., if P1 000~011, then P2

100~111

Some request patterns cannot be connected simultaneously. i.e., any two sources cannot be

connected simultaneously to destination 000 and 001

 In a tightly coupled multiprocessor system, the source is a processor and the destination is

a memory module.

Set up the path transfer the address into memory transfer the data

In a loosely coupled multiprocessor system, both the source and destination are Processsing

elements.

Department of ECE
Computer Architecture
& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY

202

Hypercube System:

 The hypercube or binary n-cube multiprocessor structure is a loosely coupled system

composed of N=2n processors interconnected in an n-dimensional binary cube.

 Each processor forms a node of the cube, in effect it contains not only a

CPU but also local memory and I/O interface.

 Each processor address differs from that of each of its n neighbors by

exactly one bit position.

 Fig. below shows the hypercube structure for n=1, 2, and 3.

 Routing messages through an n-cube structure may take from one to n links

from a source node to a destination node.

 A routing procedure can be developed by computing the exclusive-OR of

the source node address with the destination node address.

 The message is then sent along any one of the axes that the resulting binary

value will have 1 bits corresponding to the axes on which the two nodes

differ.

 A representative of the hypercube architecture is the Intel iPSC computer

complex.

 It consists of 128(n=7) microcomputers, each node consists of a CPU, a

floating point processor, local memory, and serial communication interface

units

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY
203

 Hypercube structures for n=1,2,3

 Inter-processor Arbitration:

 Only one of CPU, IOP, and Memory can be granted to use the bus at a time

 Arbitration mechanism is needed to handle multiple requests to the shared resources to

resolve multiple contention

System Bus:

 A bus that connects the major components such as CPU’s, IOP’s and memory

 A typical System bus consists of 100 signal lines divided into three functional

groups: data, address and control lines. In addition there are power distribution lines

to the components.

Synchronous Bus:

 Each data item is transferred over a time slice

 known to both source and destination unit

 Common clock source or separate clock and synchronization signal is transmitted

periodically to synchronize the clocks in the system

Asynchronous Bus:

 Each data item is transferred by Handshake mechanism

 Unit that transmits the data transmits a control signal that indicates

the presence of data

 Unit that receiving the data responds with another control signal to

acknowledge the receipt of the data

 Strobe pulse -supplied by one of the units to indicate to the other unit

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY
204

when the data transfer has to occur

Table IEEE standard 796 multibus signals

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY
205

 Inter-processor arbitration static arbitration

Interprocessor Arbitration Dynamic Arbitration:

 Priorities of the units can be dynamically changeable while the system is in operation

 Time Slice

Fixed length time slice is given sequentially to each processor, round- robin

fashion

 Polling

Unit address polling -Bus controller advances the address to identify the requesting

unit. When processor that requires the access recognizes its address, it activates the

bus busy line and then accesses the bus. After a number of bus cycles, the polling

continues by choosing a different processor.

 LRU

The least recently used algorithm gives the highest priority to the requesting

device that has not used bus for the longest interval.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY
206

FIFO

The first come first serve scheme requests are served in the order received. The bus

controller here maintains a queue data structure.

Rotating Daisy Chain

Conventional Daisy Chain -Highest priority to the nearest unit to the bus controller

Rotating Daisy Chain –The PO output of the last device is connected to the PI of

the first one. Highest priority to the unit that is nearest to the unit that has most

recently accessed the bus(it becomes the bus controller)

 Inter processor communication and synchronization:

 The various processors in a multiprocessor system must be provided with a facility

for communicating with each other.

 A communication path can be established through a portion of memory or a common

input-output channels.

 The sending processor structures a request, a message, or a procedure, and places it in

the memory mailbox.

 Status bits residing in common memory

 The receiving processor can check the mailbox periodically.

 The response time of this procedure can be time consuming.

 A more efficient procedure is for the sending processor to alert the receiving processor

directly by means of an interrupt signal.

 In addition to shared memory, a multiprocessor system may have other shared resources.

 e.g., a magnetic disk storage unit.

 To prevent conflicting use of shared resources by several processors there must be a

provision for assigning resources to processors. i.e., operating system.

 There are three organizations that have been used in the design of operating system for

multiprocessors: master-slave configuration, separate operating system, and distributed

operating system.

 In a master-slave mode, one processor, master, always executes the operating system

functions.

 In the separate operating system organization, each processor can execute the operating

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY
207

system routines it needs. This organization is more suitable for loosely coupled systems.

 In the distributed operating system organization, the operating system routines are

distributed among the available processors. However, each particular operating system

function is assigned to only one processor at a time. It is also referred to as a floating

operating system.

Loosely Coupled System:

 There is no shared memory for passing information.

 The communication between processors is by means of message passing through I/O

channels.

 The communication is initiated by one processor calling a procedure that resides in the

memory of the processor with which it wishes to communicate.

 The communication efficiency of the interprocessor network depends on the communication

routing protocol, processor speed, data link speed, and the topology of the network.

Interprocess Synchronization:

 The instruction set of a multiprocessor contains basic instructions that are used to

implement communication and synchronization between cooperating processes.

 Communication refers to the exchange of data between different

processes.

 Synchronization refers to the special case where the data used to

communicate between processors is control information.

 Synchronization is needed to enforce the correct sequence of processes and to ensure

mutually exclusive access to shared writable data.

 Multiprocessor systems usually include various mechanisms to deal with the

synchronization of resources.

 Low-level primitives are implemented directly by the hardware.

 These primitives are the basic mechanisms that enforce mutual exclusion for

more complex mechanisms implemented in software.

 A number of hardware mechanisms for mutual exclusion have been

developed.

Mutual Exclusion with Semaphore:

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY
208

 A properly functioning multiprocessor system must provide a mechanism that will

guarantee orderly access to shared memory and other shared resources.

 Mutual exclusion: This is necessary to protect data from being changed

simultaneously by two or more processors.

 Critical section: is a program sequence that must complete execution before

another processor accesses the same shared resource.

 A binary variable called a semaphore is often used to indicate whether or not a processor

is executing a critical section.

 Testing and setting the semaphore is itself a critical operation and must be

performed as a single indivisible operation.

 A semaphore can be initialized by means of a test and set instruction in

conjunction with a hardware lock mechanism.

 The instruction TSL SEM will be executed in two memory cycles (the first to read

and the second to write) as follows:

R M[SEM], M[SEM] 1

Cache Coherence:

Cache coherence is the consistency of shared resource data that ends up stored in multiple

local caches. When clients in a system maintain caches of a common memory resource, problems

may arise with inconsistent data, which is particularly the case with CPUs in a multiprocessing

system.

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY
209

Shared Cache

 Disallow private cache

 Access time delay Software Approaches

Read-Only Data are Cacheable

 Private Cache is for Read-Only data

 Shared Writable Data are not cacheable

 Compiler tags data as cacheable and noncacheable

 Degrade performance due to software overhead

Centralized Global Table

 Status of each memory block is maintained in CGT: RO(Read-Only);

RW(Read and Write)

 All caches can have copies of RO blocks

Department of ECE
Computer Architecture

& Organization

St.Johns College of Engineering & Technology

Yemmiganur-518360, Kurnool(D), A.P. College code: JONY
210

 Only one cache can have a copy of RW block

 Hardware Approaches

Snoopy Cache Controller

 Cache Controllers monitor all the bus requests from CPUs and IOPs

 All caches attached to the bus monitor the write operations

 When a word in a cache is written, memory is also updated (write through)

 Local snoopy controllers in all other caches check their memory to

determine if they have a copy of that word; If they have, that location is

marked invalid(future reference to this location causes cache miss)

	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, ANANTAPUR
	B.Tech (ECE) – III-I Sem L T P C
	Digital Computers:
	Basic Definitions:
	Register Transfer Language:
	Registers:
	Register Transfer:
	if (P=1) then R2← R1
	P: R2← R1

	Bus and Memory Transfers:
	Common bus system is with multiplexers:
	BUS← C, R1← BUS
	R1← C

	Arithmetic Micro-operations:
	R3 ← R1 + R2
	R3 ← R1 + R2 + 1
	Binary Adder:

	Binary Adder – Subtractor:
	Binary Incrementer:

	Arithmetic Circuit:
	Addition:
	Subtraction:
	Increment:
	Decrement:
	List of Logic Microoperations:
	Hardware Implementation:

	Shift Microoperations:
	 Logical Shift:
	 Circular Shift:
	 Arithmetic Shift:
	Hardware Implementation:
	Arithmetic Logic Shift Unit:

	Stored Program Organization:
	Addressing of Operand:
	2. Computer Registers:
	Common Bus System:
	3. Computer Instructions:
	Instruction Set Completeness:
	4. Timing andControl:
	D3T4: SC0
	5. Instruction Cycle:
	Determine the Type of Instruction:
	Register-Reference Instructions:
	6. Memory-Reference Instructions:
	AND to AC:
	ADD to AC:
	Control Flowchart:
	7. Input-Output and Interrupt:
	Input-Output Configuration:
	Input-Output Instructions:
	Program Interrupt:
	Interrupt cycle:
	Hardwired Control Unit:
	Micro programmed control unit:
	Dynamic microprogramming:
	1. Control Memory:
	Writeable Control Memory:
	Control Word:
	Microoperations:
	Micro instruction:
	Micro program:
	Microcode:
	Organization of micro programmed control unit
	Figure: Micro-programmed control organization
	2. Address Sequencing:
	Step-1:
	Step-2:
	Step-3:
	Step-4:
	In summary, the address sequencing capabilities required in a control memory are:
	Selection of address for control memory
	Mapping of an Instruction
	Figure: Mapping from instruction code to microinstruction address
	Computer Hardware Configuration
	Microinstruction Format
	Figure: Microinstruction Format
	Table: Condition Field
	Table: Branch Field
	Table: Symbolic Microinstruction
	Micro programmed sequencer for a control memory:
	Microprogram sequencer:

	Figure: Microprogram Sequencer for a control memory
	Boolean Function:

	Example: R1 <- R2 + R3
	Symbolic Designation
	Stack organization:
	Register stack:
	PUSH:
	POP:

	Memory Stack.
	PUSH
	POP

	2. Instruction formats:
	Register Indirect Mode
	Auto-increment or Auto-decrement features:
	Direct Address Mode
	Indirect Addressing Mode
	Relative Addressing Modes
	Indexed Addressing Mode
	Base Register Addressing Mode
	4. Data Transfer Instructions:
	Data Transfer Instructions with Different Addressing Modes
	6. Program Control Instructions :
	Figure: Status Register Bits
	Program Control Instructions

	Subroutine Call and Return:
	7. Program Interrupt:
	Types of interrupts.:
	Reverse Polish Notation (RPN) with appropriateexample.
	Evaluation of Arithmetic Expressions

	DATA REPRESENTATION
	3.1 Computer Data types:
	3.2.1 Decimal (Base 10) Number System
	3.2.2 Binary (Base 2) Number System
	3.2.3 Hexadecimal (Base 16) Number System
	3.2.5 Conversion from Binary to Hexadecimal
	3.2.6 Conversion from Base r to Decimal (Base 10)
	3.2.7 Conversion from Decimal (Base 10) to Base r
	3.2.8 Conversion between Two Number Systems with Fractional Part
	3.3. Computer Memory & Data Representation:
	3.4. Integer Representation:
	3.4.1 n-bit Unsigned Integers
	3.4.2 Signed Integers
	3.4.3 n-bit Sign Integers in Sign-Magnitude Representation
	3.4.4 n-bit Sign Integers in 1's Complement Representation
	3.4.5 n-bit Sign Integers in 2's Complement Representation
	3.4.6 Computers use 2's Complement Representation for Signed Integers
	3.4.7 Range of n-bit 2's Complement Signed Integers
	3.4.8 Decoding 2's Complement Numbers

	3.5. Floating-Point Number Representation:
	3.5.1 IEEE-754 32-bit Single-Precision Floating-Point Numbers
	Normalized Form
	De-Normalized Form
	Summary

	3.6 Addition and Subtraction:
	Addition and Subtraction with Signed-Magnitude Data
	Hardware Implementation
	Hardware Algorithm
	AdditionandSubtractionwithSigned-2’sComplementData
	3.7. MultiplicationAlgorithm
	Hardware Implementation for Signed-Magnitude Data
	Hardware Algorithm (1)
	BoothMultiplicationAlgorithm
	3.8. Division Algorithms:
	HardwareImplementation forSigned-MagnitudeData
	DivideOverflow
	HardwareAlgorithm
	3.9. Floating-PointArithmeticOperations:
	RegisterConfiguration
	AdditionandSubtraction:
	Multiplication
	Division
	3.10. DecimalArithmeticOperations:
	AdditionandSubtraction
	Multiplication (1)
	Division (1)
	4.1. Input-Output Interface:
	4.2. AsynchronousDataTransfer:
	StrobeSignal :
	DisadvantageofStrobeSignal
	Handshaking:

	4.3. ModesofData Transfer:
	4.3.1. ProgrammedI/OMode:
	4.3.2. Interrupt-InitiatedI/O:
	PriorityInterrupt:
	PollingProcedure:
	SerialorDaisyChainingPriority:
	ParallelPriorityInterrupt:
	4.3.3. DirectMemoryAccess(DMA):

	Multiprogramming:
	MemorymanagementSystem:
	RAMandROM CHIP:
	MemoryAddressMap:
	MemoryConnectiontoCPU:
	HardwareOrganization
	MatchLogic
	ReadOperation:
	Ifmorethanonewordinmemorymatchestheunmaskedargumentfield,allthematchedwordswillhave1’s inthecorrespondingbit positionof thematchregister
	WriteOperation
	LocalityofReference
	Principleofcache:
	CacheHitOperation:
	Read/WriteoperationsoncacheincaseofHit:
	Read/WriteoperationsoncacheincaseofMissReadOperation:
	WriteOperation:
	4.8. MappingFunctions:
	Directmapping:
	Associativemapping:
	Set-associativemapping:
	ReplacementPolicies:
	Incaseofassociativemapping
	Incaseofsetassociativemapping
	VirtualMemory-Background
	TypesofMemory
	AddressSpaceandMemorySpace
	AddressMappingUsingPages
	AssociativeMemoryPageTable
	AddressTranslation
	CISC Processor:
	Characteristics of CISC Processor:
	CISC Processors Architecture:
	Advantages of CISC Processors:
	Disadvantages of CISC Processors:

	RISC Processor:
	Advantages of RISC Processor:
	Disadvantages of RISC Processor:
	RISC Architecture:
	Features of RISC Processor:

	Difference between the RISC and CISC Processors:

	Parallel processing:
	Pipelining:
	Arithmetic Pipeline:
	Instruction Pipeline:
	Pipeline Conflicts :
	Features of Vector Processing
	Attached Array Processors:
	SIMD Array Processors
	Why use the Array Processor:

	Types of Multiprocessors:
	Symmetric Multiprocessors
	Asymmetric Multiprocessors

	Advantages of Multiprocessor Systems:
	Disadvantages of Multiprocessor Systems:

	Characteristics of Multiprocessors:
	Hypercube System:
	Inter-processor Arbitration:
	Inter processor communication and synchronization:
	Loosely Coupled System:
	Interprocess Synchronization:
	Mutual Exclusion with Semaphore:
	Cache Coherence:

